The double grazing periodic motions and bifurcations are investigated for a two-degree-of-freedom vibroimpact system with symmetrical rigid stops in this paper. From the initial condition and periodicity, existence of the double grazing periodic motion of the system is discussed. Using the existence condition derived, a set of parameter values is found that generates a double grazing periodic motion in the considered system. By extending the discontinuity mapping of one constraint surface to that of two constraint surfaces, the Poincaré map of the vibroimpact system is constructed in the proximity of the grazing point of a double grazing periodic orbit, which has a more complex form than that of the single grazing periodic orbit. The grazing bifurcation of the system is analyzed through the Poincaré map with clearance as a bifurcation parameter. Numerical simulations show that there is a continuous transition from the chaotic band to a period-1 periodic motion, which is confirmed by the numerical simulation of the original system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.