In this work, the activation effect of vacuum thermal treatment on MIL-101(Fe) (MIL: Materials of Institute Lavoisier) was investigated for the first time. It demonstrated that vacuum thermal activation could accelerate the activation of persulfate (PS) by MIL-101(Fe), and the enhancement of the catalytic capacity of MIL-101(Fe) was mainly attributed to the change in the FeII/FeIII mixed-valence center. The results of the SEM and XRD showed that vacuum thermal activation had a negligible effect on the crystal structure and particle morphology of MIL-101(Fe). Meanwhile, the higher temperature of vacuum thermal activation caused a higher relative content ratio of FeII/FeIII. A widely used azo dye, X-3B, was chosen as the probe molecule to investigate the catalytic performance of all samples. The results showed that the activated samples could remove X-3B more effectively, and the sample activated at 150 °C without regeneration could effectively activate PS to remove X-3B for at least 5 runs and approximately 900 min. This work highlights the often-overlooked activation effect of vacuum thermal treatment and provides a simple way to improve the catalytic capacity and reusability of MIL-101(Fe) which is beneficial for the application of MIL-101(Fe)/PS systems in azo dye wastewater treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.