N-Doped graphene glass was prepared through a novel plasma-assisted HFCVD approach, which exhibited significantly enhanced voltage generation for energy harvesting.
Although the photovoltaic performance of perovskite solar cells (PSCs) has reached the commercial standards, the unsatisfactory stability limits their further application. Hydrophobic interface and encapsulation can block the damage of water and oxygen, while the instability induced by intrinsic residual strain remains inevitable. Here, the residual strain in a twodimensional (2D) Ruddlesden-Popper (RP) perovskite film is investigated by X-ray diffraction and atomic force microscopy. It's found that the spacer cations contribute to the residual strain even though they are not in the inorganic cages. Benefited from strain relaxation, the film quality is improved, leading to suppressed recombination, promoted charge transport and enhanced efficiency. More significantly, the strain-released devices maintain 86 % of the initial efficiency after being kept in air with 85 % relative humidity (RH) for 1080 h, 82 % under maximum power point (MPP) tracking at 50 °C for 804 h and 86 % after continuous heating at 85 °C for 1080 h.
Direct growth of graphene films on glass is of great importance but has so far met with limited success. The noncatalytic property of glass results in the low decomposition ability of hydrocarbon precursors, especially at reduced temperatures (<1000 °C), and therefore amorphous carbon (a-C) films are more likely to be obtained. Here, we report the hydrogen influence on the structural and electrical properties of carbon films deposited on quartz glass at 850 °C by hot-filament chemical vapor deposition (HFCVD). The results revealed that the obtained a-C films were all graphitelike carbon films. Structural transition of the deposited films from a-C to nanocrystalline graphene was achieved by raising the hydrogen dilution ratios from 10 to over 80%. On the basis of systematic structural and chemical characterizations, a schematic process with three steps including sp chain aggregation, aromatic ring formation, and sp bond etching was proposed to interpret the structural evolution. The nanocrystalline graphene films grown on glass by HFCVD exhibited good electrical performance with a carrier mobility of 36.76 cm/(V s) and a resistivity of 5.24 × 10 Ω cm over an area of 1 cm. Temperature-dependent electrical characterizations revealed that the electronic transport in carbon films was dominated by defect, localized, and extended states, respectively, when increasing the temperature from 75 to 292 K. The nanocrystalline graphene films presented higher carrier mobility and lower carrier concentration than those of a-C films, which was mainly attributed to their smaller conductive activation energy. The present investigation provides an effective way for direct growth of graphene films on glass at reduced temperatures and also offers useful insights into the understanding of structural and electrical relationship between a-C and graphene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.