BackgroundParkinson’s disease (PD) is the most common movement neurodegenerative movement disorder. An incomplete understanding of the molecular pathways involved in its pathogenesis impedes the development of effective disease-modifying treatments. To address this gap, we have previously generated a Drosophila model of PD that overexpresses PD pathogenic mutant form of the second most common causative gene of PD, Leucine-Rich Repeat Kinase 2 (LRRK2).FindingsWe employed this model in a genetic modifier screen and identified a gene that encodes for a core subunit of retromer – a complex essential for the sorting and recycling of specific cargo proteins from endosomes to the trans-Golgi network and cell surface. We present evidence that overexpression of the Vps35 or Vps26 component of the cargo-recognition subunit of the retromer complex ameliorates the pathogenic mutant LRRK2 eye phenotype. Furthermore, overexpression of Vps35 or Vps26 significantly protects from the locomotor deficits observed in mutant LRRK2 flies, as assessed by the negative geotaxis assay, and rescues their shortened lifespan. Strikingly, overexpressing Vps35 alone protects from toxicity of rotenone, a neurotoxin commonly used to model parkinsonism, both in terms of lifespan and locomotor activity of the flies, and this protection is sustained and even augmented in the presence of mutant LRRK2. Finally, we demonstrate that knocking down expression of Vps35 in dopaminergic neurons causes a significant locomotor impairment.ConclusionsFrom these results we conclude that LRRK2 plays a role in the retromer pathway and that this pathway is involved in PD pathogenesis.
-Purpose: Monocarboxylate transporters (MCTs) are involved in the transport of monocarboxylates such as ketone bodies, lactate, and pharmaceutical agents. CD147 functions as an ancillary protein for MCT1 and MCT4 for plasma membrane trafficking. Sex differences in MCT1 and MCT4 have been observed in muscle and reproductive tissues; however, there is a paucity of information on MCT sex differences in tissues involved in drug disposition. The objective of the present study was to quantify hepatic MCT1, MCT4 and CD147 mRNA, total cellular and membrane protein expression in males, over the estrous cycle in females and in ovariectomized (OVX) females. Method: Liver samples were collected from females at the four estrous cycle stages (proestrus, estrus, metestrus, diestrus), OVX females and male Sprague-Dawley rats (N = 3 -5). Estrus cycle stage of females was determined by vaginal lavage. mRNA and protein (total and membrane) expression of MCT1, MCT4 and CD147 was evaluated by qPCR and western blot analysis. Results: MCT1 mRNA and membrane protein expression varied with estrous cycle stage, with OVX females having higher expression than males, indicating that female sex hormones may play a role in MCT1 regulation. MCT4 membrane expression varied with estrous cycle stage with expression significantly lower than males. MCT4 membrane expression in OVX females was also lower than males, suggesting that androgens play a role in membrane expression of MCT4. Males had higher membrane CD147 expression, whereas there was no difference in whole cell protein and mRNA levels suggesting that androgens are involved in regulating CD147 membrane localization. Conclusions: This study demonstrates hepatic expression and membrane localization of MCT1, MCT4 and CD147 are regulated by sex hormones. Sex differences in hepatic MCT expression may lead to altered drug disposition, so it is critical to elucidate the underlying mechanisms in the sex hormone-dependent regulation of MCT expression.
Purpose: Monocarboxylate transporters (MCT) are proton-coupled integral membrane proteins that control the influx and efflux of endogenous monocarboxylates such as lactate, acetate and pyruvate. They also transport and mediate the clearance of drugs such as valproate and gamma-hydroxybutyrate. CD147 functions as ancillary protein that chaperones MCT1 and MCT4 to the cell membrane. There is limited data on the maturation of MCT and CD147 expression in tissues related to drug distribution and clearance. The objective of the present study was to quantify hepatic MCT1, MCT4, and CD147 mRNA, whole cell and membrane protein expression from birth to sexual maturity. Methods: Liver tissues were collected from male and female Sprague Dawley rats at postnatal days (PND) 1, 3, 5, 7, 10, 14, 18, 21, 28, 35, and 42 (n = 3 - 5). Hepatic mRNA, total and membrane protein expression of MCT1, MCT4, and CD147 was evaluated via qPCR and western blot. Results: MCT1 mRNA and protein demonstrated nonlinear maturation patterns. MCT1 and CD147 membrane protein exhibited low expression at birth, with expression increasing three-fold by PND14, followed by a decline in expression at sexual maturity. MCT4 mRNA had highest expression at PND 1, with decreasing expression towards sexual maturity. In contrast, MCT4 membrane protein exhibited minimal expression from birth through weaning before a 10-fold surge at PND35, whereupon there was a sharp decline in expression at PND42. There was a significant positive correlation between MCT1 and CD147 whole cell and membrane expression, while MCT4 membrane expression demonstrated a weak negative correlation with CD147. Conclusion: Our study elucidates the transcriptional and translational maturation patterns of MCT1, MCT4 and CD147 expression, with isoform-dependent differences in the liver. Changes in transporter expression during development may greatly influence drug distribution and clearance in pediatric populations.
Background: The illicit use and abuse of gamma-hydroxybutyric acid (GHB) occurs due to its sedative/hypnotic and euphoric effects. Currently, there are no clinically available therapies to treat GHB overdose, and care focuses on symptom treatment until the drug is eliminated from the body. Proton- and sodium-dependent monocarboxylate transporters (MCTs (SLC16A) and SMCTs (SLC5A)) transport and mediate the renal clearance and distribution of GHB. Previously, it has been shown that MCT expression is regulated by sex hormones in the liver, skeletal muscle and Sertoli cells. The focus of the current study is to evaluate GHB toxicokinetics and renal monocarboxylate transporter expression over the estrus cycle in females, and in the absence of male and female sex hormones. Methods: GHB toxicokinetics and renal transporter expression of MCT1, SMCT1 and CD147 were evaluated were evaluated in females over the estrus cycle, and in ovariectomized (OVX) female, male and castrated (CST) male rats. GHB was administered iv bolus (600 and 1000 mg/kg) and plasma and urine samples were collected for six hours post-dose. GHB concentrations were quantified using a validated LC/MS/MS assay. Transporter mRNA and protein expression was quantified by qPCR and western blot. Results: GHB renal clearance and AUC varied between sexes and over the estrus cycle in females with higher renal clearance and a lower AUC in proestrus females as compared to males (intact and CST), and OVX females. We demonstrated that renal MCT1 membrane expression varies over the estrus cycle, with the lowest expression observed in proestrus females, which is consistent with the observed changes in GHB renal clearance. Conclusions: Our results suggest that females may be less susceptible to GHB-induced toxicity due to decreased exposure resulting from increased renal clearance, as a result of decreased renal MCT1 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.