Malaria is a major health problem in the world particularly in sub-Saharan Africa where 90% of malaria deaths occur. Likewise malaria is one of the leading causes of morbidity and mortality in Ethiopia. It has been reported that about 75% of the country is malarious where 60% of its population is at risk of this infection. Like many African countries, Ethiopian urban settings are characterized by poor housing, lack of sanitation and drainage of surface water which provide conducive environment for the breeding of vector mosquitoes for the transmission of malaria. There are few researches on urban malaria under the urban settings of Ethiopia. The purpose of this study was to assess the magnitude of malaria cases due to Plasmodium falciparum and Plasmodium vivax in Batu town, Oromia, Ethiopia. Retrospective laboratory confirmed malaria case record data of six years (2012-2017) were used to analyze the magnitude of malaria cases due to P. falciparum and P. vivax, in Batu town, Oromia, Ethiopia. The retrospective data analysis revealed an overall 21,797 malaria confirmed cases; of which 49.5% were due to P. falciparum and 50.5% were due to P. vivax, with a slight decline in malaria between 2012 and 2017. Malaria cases were recorded in both sexes and all age groups in the study area. From the result of the present analysis it can be concluded that both P. falciparum and P. vivax were the cause for malaria cases indicating malaria is still public health problem in Batu town. Therefore, appropriate strategic control measures must be designed to protect the public and eventually eliminate malaria from the area and the country as a whole.
Background Plasmodium falciparum resistance to series of anti-malarial drugs is a major challenge in efforts to control and/or eliminate malaria globally. In 1998, following the widespread of chloroquine (CQ) resistant P. falciparum, Ethiopia switched from CQ to sulfadoxine–pyrimethamine (SP) and subsequently in 2004 from SP to artemether–lumefantrine (AL) for the treatment of uncomplicated falciparum malaria. Data on the prevalence of CQ resistance markers after more than two decades of its removal is important to map the selection pressure behind the targets codons of interest. The present study was conducted to determine the prevalence of mutations in Pfcrt K76T and Pfmdr1 N86Y codons among malaria-infected patients from Adama, Olenchiti and Metehara sites of East Shewa zone, Oromia Regional State, Ethiopia. Methods Finger-prick whole blood samples were collected on 3MM Whatman ® filter papers from a total of 121 microscopically confirmed P. falciparum infected patients. Extraction of parasite DNA was done by Chelex-100 method from dried blood spot (DBS). Genomic DNA template was used to amplify Pfcrt K76T and Pfmdr1 N86Y codons by nested PCR. Nested PCR products were subjected to Artherobacter protophormiae-I (APoI) restriction enzyme digestion to determine mutations at codons 76 and 86 of Pfcrt and Pfmdr1 genes, respectively. Results Of 83 P. falciparum isolates successfully genotyped for Pfcrt K76T, 91.6% carried the mutant genotypes (76T). The prevalence of Pfcrt 76T was 95.7%, 92.5% and 84.5% in Adama, Metehara and Olenchiti, respectively. The prevalence of Pfcrt 76T mutations in three of the study sites showed no statistical significance difference (χ2 = 1.895; P = 0.388). On the other hand, of the 80 P. falciparum samples successfully amplified for Pfmdr1, all carried the wild-type genotypes (Pfmdr1 N86). Conclusion Although CQ officially has been ceased for the treatment of falciparum malaria for more than two decades in Ethiopia, greater proportions of P. falciparum clinical isolates circulating in the study areas carry the mutant 76T genotypes indicating the presence of indirect CQ pressure in the country. However, the return of Pfmdr1 N86 wild-type allele may be favoured by the use of AL for the treatment of uncomplicated falciparum malaria.
Objective This study aimed to assess the magnitude of malaria and its associated risk factors in urban, Batu town, Oromia Regional State, Ethiopia. Methods This health-facility based prospective cross-sectional study enrolled 356 febrile malaria patients to assess risk factors associated with malaria infection. Results An overall positivity rate of 17.13% (61/356) for malaria infection was observed. Among the malaria-positive patients, 50.8% (31/61) of them were positive for Plasmodium vivax, 45.90% (28/61) were positive for Plasmodium falciparum, and 3.3% (2/61) had mixed infections of P. falciparum and P. vivax. Logistic regression analysis revealed that individuals who possessed insecticide-treated net (Odds ratio [OR] = 0.38, 95% confidence interval [CI] [0.194, 0.743]) and whose houses were sprayed with insecticides (OR = 0.18, 95% CI [0.097, 0.34]) were significantly less likely to have a malaria infection. Individuals living closer to stagnant water had a significantly greater chance of malaria infection than those who lived a distance from stagnant water (OR = 0.34, 95% CI [0.19, 0.59]). Conclusion The present study revealed that malaria remains a public health problem in the urban area of Batu town, which suggests that the same might be true for other urban areas in the country.
Malaria remains one of the most devastating infectious diseases globally, and transmission-blocking activities are needed. Plasmodium transmission from human to mosquitoes is poorly studied, particularly in endemic countries, and the membrane feeding assay allows it to be determined. In this study, we demonstrated human infectious reservoirs of malaria.
Background Measuring risk of malaria transmission is complex, especially in case of Plasmodium vivax. This may be overcome using membrane feeding assays in the field where P. vivax is endemic. However, mosquito-feeding assays are affected by a number of human, parasite and mosquito factors. Here, this study identified the contributions of Duffy blood group status of P. vivax-infected patients as a risk of parasite transmission to mosquitoes. Methods A membrane feeding assay was conducted on a total of 44 conveniently recruited P. vivax infected patients in Adama city and its surroundings in East Shewa Zone, Oromia region, Ethiopia from October, 2019 to January, 2021. The assay was performed in Adama City administration. Mosquito infection rates were determined by midgut dissections at seven to 8 days post-infection. Duffy genotyping was defined for each of the 44 P. vivax infected patients. Results The infection rate of Anopheles mosquitoes was 32.6% (296/907) with 77.3% proportion of infectious participants (34/44). Infectiousness of participants to Anopheles mosquitoes appeared to be higher among individuals with homozygous Duffy positive blood group (TCT/TCT) than heterozygous (TCT/CCT), but the difference was not statistically significant. The mean oocyst density was significantly higher among mosquitoes fed on blood of participants with FY*B/FY*BES than other genotypes (P = 0.001). Conclusion Duffy antigen polymorphisms appears to contribute to transmissibility difference of P. vivax gametocytes to Anopheles mosquitoes, but further studies are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.