Lossy dielectric bars have potential applications in high power microwave (HPM) radiation-effect experiments performed in wind tunnels. Under plane excitation, beat wave patterns are observed along lossy and lossless dielectric bars in 3-D electromagnetic simulation results. Mode analysis is performed to clarify the two main modes in the beat waves—the leaky and guided modes. Comparisons are made between the theoretical and simulated results and acceptable agreements are obtained. The absorbing array of lossy dielectric bars is further investigated. The array can attenuate 90% of the microwave power at 10 GHz when a ten-meter series of such arrays is arranged. It is expected that the proposed absorbing array can achieve the required attenuation, considering that the testing object under microwave radiation is also an absorbing structure itself.
An experimental investigation of the stability in roll of a square section missile at high incidence was conducted in FL-23 wind tunnel. Dynamic motions were obtained on a square section missile that is free to rotate about its longitudinal axis. Different dynamic rolling motions were observed depending on the incidence of the model sting. These dynamic regimes include damped oscillations, quasi-limit-cycle wing-rock motion, and constant rolling. A coupling numerical method was established by solving the fluid dynamics equations and the rigid-body dynamics equations synchronously in order to predict the onset and the development of uncommented motions and then explore the unsteady movement characteristics of the aircraft. The study indicates that the aircraft loss stability at high incidence is caused by the asymmetric vertex on the level fin tip liftoff and attach alternately. The computation results are in line with the experiment results.
The effect of suction on airfoil surface at various locations downstream of the leadingedge of a thin flat-plate airfoil was studied in a wind tunnel at a low Reynolds number. At post-stall angles of attack, substantial lift enhancement and delay of stall can be achieved if a large separation bubble is generated by reattaching the massively separated flow near the trailing-edge. The effects of location and volumetric flow rate of suction were investigated by means of force and velocity measurements. There is an optimal location of suction around x s /c = 0.4, which generates the maximum lift coefficient for suction coefficients less than 3%. When suction is applied near the leading-edge, it may be easier to reattach the flow for small suction coefficients, but the resulting small separation bubble causes smaller lift increase. The size of the separation bubble is important, and small bubbles can even cause smaller lift enhancement than the separated flows due to the suction further downstream.
To visualize the flow in the test section of an indraft supersonic wind tunnel in the University of Glasgow as long as possible, a background-oriented schlieren system was built up preliminarily. A MATLAB program based on a random dot algorithm developed in this study provides a fully customizable tool to generate background patterns with different sizes and dot densities. Background patterns produced by the in-house developed program then can be printed by a common ink-jet printer. To enhance the signal-noise ratio of the measurement system, white reflective film sheets, or semi-transparent paper can be employed. The correlation algorithm base on fast Fourier transform that is also applicable for PIV was chosen to process background oriented schlieren images. A validation test was performed to visualize the flow structure around a Pitot tube at M = 2.0. The experimental result proves that the BOS system established in this study is capable of visualizing the supersonic flow structure around the Pitot tube and sensitive enough to reveal weak density changes produced by the boundary layer, expansion waves, and weak oblique shock waves. Next, the current BOS system will be improved further by increasing the intensity of light sources to shorten the exposure time, using new cameras with better spatial resolution, and optimizing the background pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.