This paper presents a new type of crawler guide rail dual drive micro feed servo system based on “crawler type” guide rail. Through the innovative design of the crawler guide rail and the change of the working mode, the table, and the crawler type movable rail are relatively static, and the influence of nonlinear friction in low-speed micro feed is eliminated, so that the system can have a lower stable speed limit and realize accurate micro feed control. The Euler-Bernoulli beam element with axial and torsional degrees of freedom is used to describe the axial and torsional vibrations of the ball screw, and the lumped parameter method is used to analyze other parts of the feed system, and the electromechanical coupling dynamic model considering the nonlinear friction is established. The transfer function block diagram is used to characterize the motion relationship of the crawler guide rail dual drive servo feed system. The response difference between the screw single drive system and the new crawler guide rail dual drive system is analyzed by simulation when feeding at constant or variable speed, and the influence of different feed speed on the dynamic performance of the system. The results show that the low speed micro feed performance of the new crawler guide rail dual drive servo system is obviously better than that of the screw single drive system under the condition of constant speed or variable speed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.