The term ''Augmented Reality'' covers a wide range of applications, from the overlay of virtual graphics on a real scene using a head-mounted display for use in areas such as industrial maintenance, through to the insertion of real-time virtual graphics in TV programmes. Fundamental to all these applications is the need to be able to accurately track the motion of the camera, so that the graphics may be rendered so as to appear rigidly locked to the real world. To overcome the limitations of existing tracking systems, the MATRIS project has developed a real-time system for measuring the movement of a camera, which uses image analysis to track naturally occurring features in the scene, and data from an inertial sensor. No additional sensors, special markers, or camera mounts are required. This paper gives an overview of the system, provides the context for the other articles in this journal and presents some results.
In order to insert a virtual object into a TV image, the graphics system needs to know precisely how the camera is moving, so that the virtual object can be rendered in the correct place in every frame. Nowadays this can be achieved relatively easily in post-production, or in a studio equipped with a special tracking system. However, for live shooting on location, or in a studio that is not specially equipped, installing such a system can be difficult or uneconomic. To overcome these limitations, the MATRIS project is developing a real-time system for measuring the movement of a camera. The system uses image analysis to track naturally occurring features in the scene, and data from an inertial sensor. No additional sensors, special markers, or camera mounts are required. This paper gives an overview of the system and presents some results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.