Solubility, the phenomenon of dissolution of solute in solvent to give a homogenous system, is one of the important parameters to achieve desired concentration of drug in systemic circulation for desired (anticipated) pharmacological response. Low aqueous solubility is the major problem encountered with formulation development of new chemical entities as well as for the generic development. More than 40% NCEs (new chemical entities) developed in pharmaceutical industry are practically insoluble in water. Solubility is a major challenge for formulation scientist. Any drug to be absorbed must be present in the form of solution at the site of absorption. Various techniques are used for the enhancement of the solubility of poorly soluble drugs which include physical and chemical modifications of drug and other methods like particle size reduction, crystal engineering, salt formation, solid dispersion, use of surfactant, complexation, and so forth. Selection of solubility improving method depends on drug property, site of absorption, and required dosage form characteristics.
Imidazole heterocycles containing oxygen or sulfur heteroatoms are of considerable pharmaceutical interest. Many synthetic strategies for imidazolidine-2-thione and imidazole-2-thione derivatives were developed in the past years. They have been well documented by a steadily increasing number of publications and patents. Substituted imidazolidine-2-thiones and imidazole-2-thiones display remarkable biological activities. For instance, imidazole-2-thione has been reported to exhibit antimicrobial, antifungal, antithyroid, antioxidant, cardiotonic, antihypertensive, Dopamine beta-Hydroxylase (DBH) inhibitory and anti-HIV properties. Imidazolidine-2-thione derivatives have been reported to exhibit antimicrobial activity, anti-HIV activity, antifungal activity and so forth. The main purpose of this review is to present a survey of the literature on the different methods of synthesis and reactions involving imidazolidine-2-thione and imidazole-2-thione during the last few decades. This article summarizes an efficient, microwave-assisted method for the liquid-phase combinatorial synthesis of 3,5-disubstituted-thiohydantoin, also reported previously. Synthesis of metal complexes of imidazolidine-2-thione and its derivatives were reported as antimicrobial agents also discussed in the article. Some of the chiral imidazolidine-2-thione N-and C-nucleoside were reported as precursors for the synthesis of azidonucleosides and fluoronucleosides known for their anti-AIDS activity. Metal complexes of heterocyclic thione ligands were reported to possess antifungal activity. Imidazolidine-2-thione and imidazole-2-thione derivatives have found applications in diverse therapeutic areas. Imidazolidine-2-thiones are also used as a chiral auxiliary and ligand for asymmetric catalysis.
Drug-resistant bacteria are now a global health threat. In the last 5 years the WHO, The House of Lords (UK), the Centre for Disease Control (USA) and many more agencies have presented reports on the scale of this problem. Microorganisms multiply very rapidly and have adapted to fill almost every available environmental niche (Rapidly growing species of bacteria under ideal conditions of growth can multiply in about 20 minutes). All members of the chemically related beta-lactam class act at the same phase in cell wall synthesis; as a result, a bacterial cell resistant to one agent is often resistant to all other analogues. The beta-peptide has two promising characteristics that distinguish it from traditional antibiotics. Firstly, bacteria may have trouble developing resistance to the beta-peptide since bacterial defenses may not recognize its unnatural amino acids. Secondly, the magainins that the beta-peptides mimic have been around for millions of years, yet bacteria have not become resistant to them. All classes of antibiotics are subject to resistance by an efflux mechanism mediated by more than one type of pump within the same organism. The bacterial cell may have a membrane pump capable of pumping a class or several classes of antibacterial agents back out of the cell. Other mechanisms of drug resistance include destruction of beta-lactam ring by beta-lactamases, impermeability of the drug into the bacterial cell wall, alteration of targets within the bacterial cells and the by-pass mechanism (bacterial cell may have acquired an alternative mechanism for achieving the essential function).
Acyclovir is an antiviral drug having potent activity against the virus of herpes family and varicella zoster. Unfortunately, drug suffers very poor oral bioavailability (15-30%). The main objective of present study was to develop acyclovir cocrystals with improved solubility which may result in improvement of bioavailability. Hansen solubility approach was used as a tool to predict the cocrystal formation of a drug with selected coformer. Cocrystals of acyclovir with various coformers were screened in order to enhance their water solubility. Cocrystals of the drug were prepared using various methods like solvent evaporation, wet grinding, and antisolvent addition. Formation of cocrystals by solvent evaporation method was found to be better method amongst all. Optimization of cocrystal formation was carried out by employing different solvents as well as the stoichiometric ratio of acyclovir with that of coformer. Synthesis of cocrystals was optimized using water as a solvent system resulted in good agreements. The potential cocrystal formation of acyclovir was characterized by IR, PXRD and DSC techniques. An in-vitro dissolution study was performed to determine the dissolution rate of cocrystals. The results suggest that acyclovir forms cocrystals with tartaric acid and the initial dissolution rate of synthesized cocrystals were considerably faster as compared to pure acyclovir.Uniterms: Acyclovir/study. Acyclovir/dissolution study. Cocrystal/technique. Hansen solubility parameters. Solvent evaporation method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.