With the rapid development of WLAN technology, wireless device-free passive human detection becomes a newly-developing technique and holds more potential to worldwide and ubiquitous smart applications. Recently, indoor fine-grained device-free passive human motion detection based on the PHY layer information is rapidly developed. Previous wireless device-free passive human detection systems either rely on deploying specialized systems with dense transmitter-receiver links or elaborate off-line training process, which blocks rapid deployment and weakens system robustness. In the paper, we explore to research a novel fine-grained real-time calibration-free device-free passive human motion via physical layer information, which is independent of indoor scenarios and needs no prior-calibration and normal profile. We investigate sensitivities of amplitude and phase to human motion, and discover that phase feature is more sensitive to human motion, especially to slow human motion. Aiming at lightweight and robust device-free passive human motion detection, we develop two novel and practical schemes: short-term averaged variance ratio (SVR) and long-term averaged variance ratio (LVR). We realize system design with commercial WiFi devices and evaluate it in typical multipath-rich indoor scenarios. As demonstrated in the experiments, our approach can achieve a high detection rate and low false positive rate.
As an innovative strategy, edge computing has been considered a viable option to address the limitations of cloud computing in supporting the Internet-of-Things applications. However, due to the instability of the network and the increase of the attack surfaces, the security in edge-assisted IoT needs to be better guaranteed. In this paper, we propose an intelligent intrusion detection mechanism, FedACNN, which completes the intrusion detection task by assisting the deep learning model CNN through the federated learning mechanism. In order to alleviate the communication delay limit of federal learning, we innovatively integrate the attention mechanism, and the FedACNN can achieve ideal accuracy with a 50% reduction of communication rounds.
Device-free passive identity identification attracts much attention in recent years, and it is a representative application in sensorless sensing. It can be used in many applications such as intrusion detection and smart building. Previous studies show the sensing potential of WiFi signals in a device-free passive manner. It is confirmed that human’s gait is unique from each other similar to fingerprint and iris. However, the identification accuracy of existing approaches is not satisfactory in practice. In this paper, we present Wii, a device-free WiFi-based Identity Identification approach utilizing human’s gait based on Channel State Information (CSI) of WiFi signals. Principle Component Analysis (PCA) and low pass filter are applied to remove the noises in the signals. We then extract several entities’ gait features from both time and frequency domain, and select the most effective features according to information gain. Based on these features, Wii realizes stranger recognition through Gaussian Mixture Model (GMM) and identity identification through a Support Vector Machine (SVM) with Radial Basis Function (RBF) kernel. It is implemented using commercial WiFi devices and evaluated on a dataset with more than 1500 gait instances collected from eight subjects walking in a room. The results indicate that Wii can effectively recognize strangers and can achieves high identification accuracy with low computational cost. As a result, Wii has the potential to work in typical home security systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.