In the past few years, deep learning-based electrocardiogram (ECG) compression methods have achieved high-ratio compression by reducing hidden nodes. However, this reduction can result in severe information loss, which will lead to poor quality of the reconstructed signal. To overcome this problem, a novel quality-guaranteed ECG compression method based on a binary convolutional auto-encoder (BCAE) equipped with residual error compensation (REC) was proposed. In traditional compression methods, ECG signals are compressed into floating-point numbers. BCAE directly compresses the ECG signal into binary codes rather than floating-point numbers, whereas binary codes take up fewer bits than floating-point numbers. Compared with the traditional floating-point number compression method, the hidden nodes of the BCAE network can be artificially increased without reducing the compression ratio, and as many hidden nodes as possible can ensure the quality of the reconstructed signal. Furthermore, a novel optimization method named REC was developed. It was used to compensate for the residual between the ECG signal output by BCAE and the original signal. Complemented with the residual error, the restoration of the compression signal was improved, so the reconstructed signal was closer to the original signal. Control experiments were conducted to verify the effectiveness of this novel method. Validated by the MIT-BIH database, the compression ratio was 117.33 and the root mean square difference (PRD) was 7.76%. Furthermore, a portable compression device was designed based on the proposed algorithm using Raspberry Pi. It indicated that this method has attractive prospects in telemedicine and portable ECG monitoring systems.
Most of the existing multi-lead electrocardiogram (ECG) detection methods are based on all 12 leads, which undoubtedly results in a large amount of calculation and is not suitable for the application in portable ECG detection systems. Moreover, the influence of different lead and heartbeat segment lengths on the detection is not clear. In this paper, a novel Genetic Algorithm-based ECG Leads and Segment Length Optimization (GA-LSLO) framework is proposed, aiming to automatically select the appropriate leads and input ECG length to achieve optimized cardiovascular disease detection. GA-LSLO extracts the features of each lead under different heartbeat segment lengths through the convolutional neural network and uses the genetic algorithm to automatically select the optimal combination of ECG leads and segment length. In addition, the lead attention module (LAM) is proposed to weight the features of the selected leads, which improves the accuracy of cardiac disease detection. The algorithm is validated on the ECG data from the Huangpu Branch of Shanghai Ninth People’s Hospital (defined as the SH database) and the open-source Physikalisch-Technische Bundesanstalt diagnostic ECG database (PTB database). The accuracy for detection of arrhythmia and myocardial infarction under the inter-patient paradigm is 99.65% (95% confidence interval: 99.20–99.76%) and 97.62% (95% confidence interval: 96.80–98.16%), respectively. In addition, ECG detection devices are designed using Raspberry Pi, which verifies the convenience of hardware implementation of the algorithm. In conclusion, the proposed method achieves good cardiovascular disease detection performance. It selects the ECG leads and heartbeat segment length with the lowest algorithm complexity while ensuring classification accuracy, which is suitable for portable ECG detection devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.