Although anaplasmosis cases have been nationally identified in China, no human isolates of A. phagocytophilum have been obtained, which limits the analysis of any molecular and genetic contributions to patients' severe clinical manifestations and the study of the bacteria's pathogeneses in China. Given this situation, a joint project was conducted in 2009–2010. A total of 421 febrile cases of unknown etiology were collected and the patients' blood samples were collected for laboratory diagnoses including serologic diagnosis based on the four-fold rise in the anti- A. phagocytophilum IgG titer by indirect micro-immunofluorescence assay (IFA), positive PCR assay and confirmation of A. phagocytophilum DNA and positive culture of A. phagocytophilum and confirmed by amplification and sequencing of the 16S rRNA and ank A genes of the A. phagocytophilum isolates. A total of 570 ticks were collected from the patients' domestic animals (456) and from wild fields (114) for culturing and amplifying and sequencing the 16S rRNA gene of A. phagocytophilum. Phylogenetic analyses were performed on the 16S rRNA and ank A gene sequences of the isolates and the ticks tested in the study. A total of 46 (10.9%) confirmed and 16 (3.8%) probable cases were diagnosed and severe clinical features and higher mortality rates were observed in these Chinese patients. Five isolates were obtained and the 16S rRNA genes of the 5 isolates were conserved but variety for ank A genes. Two human isolates and 1 tick isolate from Shandong Peninsula, where all patients exhibited severe clinical manifestations, were grouped as one clan based on the phylogenetic analyses, while 2 other human isolates were clustered in a second clan. 43.5% of H. longicornis were infected with A. phagocytophilum.The present study is the first to obtain clinical isolates of A. phagocytophilum in China. The diversity of the ank A genes of Chinese isolates will help us to further discern the relationship between the variations in the ank A genes and the severity of the disease's clinical manifestations in China.
HBsAg quantitation has high predictive value and HBeAg quantitation has moderate predictive value for discriminating IT and IC phase. HBsAg and HBcAb quantitations have moderate predictive values for differentiation of LR and ENH phase.
Approximately 400 million people are chronically infected with hepatitis B virus (HBV) globally despite the widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection.
Osteopontin (OPN) is a multi-functional cytokine involved in cell survival, migration and adhesion. Increasing evidence has elucidated its role in tumorigenesis, progression and metastasis. However, the role of OPN in chemoresistance of human hepatocellular carcinoma (HCC) has not yet been clarified. In the present study, we examined the expression of OPN in human HCC samples before and after cisplatin-treatment, the results showed that OPN was significantly increased in cisplatin-resistant specimens. We then studied the effect of cisplatin on OPN expression in HCC cells, after exposure to cisplatin, the expression of OPN in HCC cells was elevated compared to control cells. We also found that PI3K/AKT signaling pathway was also activated by cisplatin and this effect was induced by the OPN pathway. To study the effect of OPN on chemoresistance, HCC cells were treated with cisplatin along with OPN. Incubation with OPN enchanced the chemoresistance of HCC cells to cisplatin. In contrast, blockage of OPN pathway promoted the chemosensitivity of HCC cells to cisplatin. Our results suggest that OPN enhanced chemoresistance of cisplatin in HCC cells by activating PI3K/AKT signaling pathway, blocking the OPN pathway might be a novel way to overcome the disease.
Highlights Middle-aged adults with no underlying diseases can suffer from severe COVID-19. Lung biopsies have rarely been reported in patients with serious COVID-19. In this study, pathological and inflammatory features were investigated in a patient with severe COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.