Mapping an atomistic configuration to a symmetrized N-point correlation of a field associated with the atomic positions (e.g., an atomic density) has emerged as an elegant and effective solution to represent structures as the input of machine-learning algorithms. While it has become clear that low-order density correlations do not provide a complete representation of an atomic environment, the exponential increase in the number of possible N-body invariants makes it difficult to design a concise and effective representation. We discuss how to exploit recursion relations between equivariant features of different order (generalizations of N-body invariants that provide a complete representation of the symmetries of improper rotations) to compute high-order terms efficiently. In combination with the automatic selection of the most expressive combination of features at each order, this approach provides a conceptual and practical framework to generate systematically improvable, symmetry adapted representations for atomistic machine learning.
Multi-scale equivariant representations overcome the nearsightedness of local machine-learning approaches.
In recent years, we have been witnessing a paradigm shift in computational materials science. In fact, traditional methods, mostly developed in the second half of the XXth century, are being complemented, extended, and sometimes even completely replaced by faster, simpler, and often more accurate approaches. The new approaches, that we collectively label by machine learning, have their origins in the fields of informatics and artificial intelligence, but are making rapid inroads in all other branches of science. With this in mind, this Roadmap article, consisting of multiple contributions from experts across the field, discusses the use of machine learning in materials science, and share perspectives on current and future challenges in problems as diverse as the prediction of materials properties, the construction of force-fields, the development of exchange correlation functionals for density-functional theory, the solution of the many-body problem, and more. In spite of the already numerous and exciting success stories, we are just at the beginning of a long path that will reshape materials science for the many challenges of the XXIth century.
Symmetry considerations are at the core of the major frameworks used to provide an effective mathematical representation of atomic configurations that is then used in machine-learning models to predict the properties associated with each structure. In most cases, the models rely on a description of atom-centered environments and are suitable to learn atomic properties or global observables that can be decomposed into atomic contributions. Many quantities that are relevant for quantum mechanical calculations, however—most notably the single-particle Hamiltonian matrix when written in an atomic orbital basis—are not associated with a single center, but with two (or more) atoms in the structure. We discuss a family of structural descriptors that generalize the very successful atom-centered density correlation features to the N-center case and show, in particular, how this construction can be applied to efficiently learn the matrix elements of the (effective) single-particle Hamiltonian written in an atom-centered orbital basis. These N-center features are fully equivariant—not only in terms of translations and rotations but also in terms of permutations of the indices associated with the atoms—and are suitable to construct symmetry-adapted machine-learning models of new classes of properties of molecules and materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.