This paper presents a novel unique microstrip fractal patch antenna with a COVID-19 shape designed for wireless applications. The COVID-19 antenna is a compact, miniature size, multiband, low weight, and low-cost patch antenna; the demonstrated patch antenna, simulated using the HFSS software program, consists of a circular printed patch with a radius of 0.4 cm surrounded by 5 pairs of crowns. The antenna is implemented on a double-sided copper plate with an FR4-epoxy substrate of 1 × 1 cm 2 area and 1.6 mm thickness. This small patch operates and resonates on two frequencies 7.5 GHz and 17 GHz within C and K u bands, respectively. The simulated and measured gains were respectively 0.8 dB and 0.2 dB at the lower frequency and 2.21 dB and 2 dB at the higher frequency. A coaxial probe feeding method is used in the simulation, and printed prototypes showed excellent consistency between measured and simulated resonance frequencies.
As the transistors are continuously scaling down, it becomes necessary to reduce voltage supply and power requirements of the circuit to increase its performance and stability. Whereas, current-mode devices require less number of stages with high output impedance results in improved performance and large bandwidth as compared to voltage-mode techniques. OTA are current-mode device that takes voltage as input and produces current as output with high gain and large bandwidth. The frequency bands were parameters were determined such as the cutoff frequency (fc), the band width (BW), the quality factor (Q), and the angular frequency (Wo). In this paper the design and the simulation of the transfer function has been done by using (MATLAB) in order to obtain the frequency response for all types of filter (the low pass filter, high pass filter, band pass filter and band stop filter).
Keyword: Bw, Matlab, Ota
OTA modelThese filters consist of operational transconductance amplifier and capacitor only. OTA is voltage control current source with transfer circuits. The symbol and small-signal equivalent circuit is shown in Figure (
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.