Domain adaptation enables the learner to safely generalize into novel environments by mitigating domain shifts across distributions. Previous works may not effectively uncover the underlying reasons that would lead to the drastic model degradation on the target task. In this paper, we empirically reveal that the erratic discrimination of the target domain mainly stems from its much smaller feature norms with respect to that of the source domain. To this end, we propose a novel parameter-free Adaptive Feature Norm approach. We demonstrate that progressively adapting the feature norms of the two domains to a large range of values can result in significant transfer gains, implying that those task-specific features with larger norms are more transferable. Our method successfully unifies the computation of both standard and partial domain adaptation with more robustness against the negative transfer issue. Without bells and whistles but a few lines of code, our method substantially lifts the performance on the target task and exceeds state-of-the-arts by a large margin (11.5% on Office-Home [45] and 17.1% on VisDA2017 [31]). We hope our simple yet effective approach will shed some light on the future research of transfer learning. Code is available at https
Existing 3D object detection suffers from expensive annotation costs and poor transferability to unknown data due to the domain gap, Unsupervised Domain Adaptation (UDA) aims to generalize detection models trained in labeled source domains to perform robustly on unexplored target domains, providing a promising solution for cross-domain 3D object detection. Although Self-Training (ST) based cross-domain 3D detection methods with the assistance of pseudo-labeling techniques have achieved remarkable progress, they still face the issue of lowquality pseudo-labels when there are significant domain disparities due to the absence of a process for feature distribution alignment. While Adversarial Learning (AL) based methods can effectively align the feature distributions of the source and target domains, the inability to obtain labels in the target domain forces the adoption of asymmetric optimization losses, resulting in a challenging issue of source domain bias. To overcome these limitations, we propose a novel unsupervised domain adaptation framework for 3D object detection via collaborating ST and AL, dubbed as STAL3D, unleashing the complementary advantages of pseudo labels and feature distribution alignment. Additionally, a Background Suppression Adversarial Learning (BS-AL) module and a Scale Filtering Module (SFM) are designed tailored for 3D cross-domain scenes, effectively alleviating the issues of the large proportion of background interference and source domain size bias. Our STAL3D achieves state-of-the-art performance on multiple cross-domain tasks and even surpasses the Oracle results on Waymo → KITTI and Waymo → KITTI-rain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.