An effective electrochemical influenza A biosensor based on a graphene-gold (Au) hybrid nanocomposite modified Au-screen printed electrode has been developed. The working principle of the developed biosensor relies on the measurement of neuraminidase (N) activity. After the optimization of experimental parameters like the effect of bovine serum albumin addition and immobilization times of fetuin A and PNA lectin, the analytical characteristics of the influenza A biosensor were investigated. As a result, a linear range between 10 U mL and 10 U mL was found with a relative standard deviation value of 3.23% (for 10 U mL of N, n:3) and a limit of detection value of 10 U mL N. The developed biosensor was applied for real influenza virus A (H9N2) detection and very successful results were obtained.
BackgroundSince the end of 2009, H9N2 has emerged in Tunisia causing several epidemics in poultry industry resulting in major economic losses. To monitor variations of Influenza viruses during the outbreaks, Tunisian H9N2 virus isolates were identified and genetically characterized.MethodsThe genomic RNA segments of Tunisian H9N2 strains were subjected to RT-PCR amplifications followed by sequencing analysis.ResultsPhylogenetic analysis demonstrated that A/Ck/TUN/12/10 and A/Migratory Bird/TUN/51/10 viruses represent multiple reassortant lineages, with genes coming from Middle East strains, and share the common ancestor Qa/HK/G1/97 isolate which has contributed internal genes of H5N1 virus circulating in Asia. Some of the internal genes seemed to have undergone broad reassortments with other influenza subtypes. Deduced amino acid sequences of the hemagglutinin (HA) gene showed the presence of additional glycosylation site and Leu at position 234 indicating to binding preference to α (2, 6) sialic acid receptors, indicating their potential to directly infect humans. The Hemagglutinin cleavage site motif sequence is 333 PARSSR*GLF341 which indicates the low pathogenicity nature of the Tunisian H9N2 strains and the potential to acquire the basic amino acids required for the highly pathogenic strains. Their neuraminidase protein (NA) carried substitutions in the hemadsorption (HB) site, similar to those of other avian H9N2 viruses from Asia, Middle Eastern and human pandemic H2N2 and H3N2 that bind to α -2, 6 -linked receptors. Two avian virus-like aa at positions 661 (A) and 702 (K), similar to H5N1 strains, were identified in the polymerase (PB2) protein. Likewise, matrix (M) protein carried some substitutions which are linked with increasing replication in mammals. In addition, H9N2 strain recently circulating carried new polymorphism, "GSEV" PDZ ligand (PL) C-terminal motif in its non structural (NS) protein.Two new aa substitutions (I) and (V), that haven't been previously reported, were identified in the polymerase and matrix proteins, respectively. Nucleoprotein and non-structural protein carried some substitutions similar to H5N1 strains.ConclusionConsidering these new mutations, the molecular basis of tropism, host responses and enhanced virulence will be defined and studied. Otherwise, Continuous monitoring of viral genetic changes throughout the year is warranted to monitor variations of Influenza viruses in the field.
ObjectiveEstimate the seroprevalence of influenza A virus in various commercial poultry farms and evaluate specific risk factors as well as analyze their genetic nature using molecular assays.Materials and MethodsThis report summarizes the findings of a national survey realized from October 2010 to May 2011 on 800 flocks in 20 governorates. Serum samples were screened for the presence of specific influenza virus antibodies using cELISA test. Additionally, swab samples were tested by real time and conventional RT-PCR and compared with results obtained by others assays. Phylogenetic and genetic analyses of the glycoproteins were established for some strains.ResultsOut of the 800 chicken and turkey flocks tested by cELISA, 223 showed positive anti-NP antibodies (28.7%, 95% CI: 25.6–32.1). Significantly higher seroprevalence was found among the coastal areas compared to inland and during the autumn and winter. Broiler flocks showed significantly lower seroprevalence than layers and broiler breeders. The influenza virus infection prevalence increased after the laying phase among layer flocks. In addition, AIV seropositivity was significantly associated with low biosecurity measures. The Ag EIA and rRT-PCR tests revealed significantly higher numbers of AI positive samples as compared to cell cultures or egg inoculation. All new strains were subtyped as H9N2 by real time and conventional RT-PCR. Drift mutations, addition or deletion of glycosylation sites were likely to have occurred in the HA and NA glycoproteins of Tunisian strains resulting in multiple new amino acid substitutions. This fact may reflect different evolutionary pressures affecting these glycoproteins. The role of these newly detected substitutions should be tested.ConclusionOur findings highlight the potential risk of AIV to avian health. Strict enforcement of biosecurity measures and possible vaccination of all poultry flocks with continuous monitoring of poultry stations may ensure reduction of AIV prevalence and avoid emergence of more pathogenic strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.