While most high-efficiency polymer solar cells (PSCs) are made of bulk heterojunction (BHJ) blends of conjugated polymers and fullerene derivatives, they have a significant morphological instability issue against mechanical and thermal stress. Herein, we developed an architecturally engineered compatibilizer, poly(3-hexylthiophene)-graft-poly(2-vinylpyridine) (P3HT-g-P2VP), that effectively modifies the sharp interface of a BHJ layer composed of a P3HT donor and various fullerene acceptors, resulting in a dramatic enhancement of mechanical and thermal stabilities. We directly measured the mechanical properties of active layer thin films without a supporting substrate by floating a thin film on water, and the enhancement of mechanical stability without loss of the electronic functions of PSCs was successfully demonstrated. Supramolecular interactions between the P2VP of the P3HT-g-P2VP polymers and the fullerenes generated their universal use as compatibilizers regardless of the type of fullerene acceptors, including mono- and bis-adduct fullerenes, while maintaining their high device efficiency. Most importantly, the P3HT-g-P2VP copolymer had better compatibilizing efficiency than linear type P3HT-b-P2VP with much enhanced mechanical and thermal stabilities. The graft architecture promotes preferential segregation at the interface, resulting in broader interfacial width and lower interfacial tension as supported by molecular dynamics simulations.
Air-stable solution processed all-inorganic p-n heterojunction ultraviolet photodetector is fabricated with a high gain (EQE, 25 300%). Solution-processed NiO and ZnO films are used as p-type and n-type ultraviolet sensitizing materials, respectively. The high gain in the detector is due to the interfacial trap-induced charge injection that occurs at the ITO/NiO interface by photogenerated holes trapped in the NiO film. The gain of the detector is controlled by the post-annealing temperature of the solution-processed NiO films, which are studied by X-ray photoelectron spectroscopy (XPS).
Amino acid detection/identification methods are important for understanding biological systems. In this study, we developed single-molecule measurements for investigating quantum tunneling enhancement by chemical modification and carried out machine learning-based time series analysis for developing accurate amino acid discrimination. We performed single-molecule measurement of L-aspartic acid (Asp) and L-leucine (Leu) with a mercaptoacetic acid (MAA) chemical modified nano-gap. The measured current was investigated by a machine learning-based time series analysis method for accurate amino acid discrimination. Compared to measurements using a bare nano-gap, it is found that MAA modification improves the difference in the conductance-time profiles between Asp and Leu through the hydrogen bonding facilitated tunneling phenomena. It is also found that this method enables determination of relative concentration. even in the mixture of Asp and Leu. It improves selective analysis for amino acids and therefore would be applicable in medicine, diagnosis, and singlemolecule peptide sequencing.
In early studies on organic solar cells with high conductivity PEDOT:PSS, the contact between ITO and PEDOT:PSS was considered ohmic. However, because low-conductivity PEDOT:PSS (such as AI4083) is mainly utilized...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.