The novel coronavirus disease COVID-19 that emerged in 2019 is caused by the virus SARS CoV-2 and named for its close genetic similarity to SARS CoV-1 that caused severe acute respiratory syndrome (SARS) in 2002. Both SARS coronavirus genomes encode two overlapping large polyproteins which are cleaved at specific sites by a cysteine 3C-like protease (3CL pro) in a post-translational processing step that is critical for coronavirus replication. The 3CL pro sequences for CoV-1 and CoV-2 viruses are 100% identical in the catalytic domain that carries out protein cleavage. A research effort that focused on the discovery of reversible and irreversible ketone-based inhibitors of SARS CoV-1 3CL pro employing ligand-protease structures solved by X-ray crystallography led to the identification of 3 and 4. Preclinical experiments reveal 4 (PF-00835231) as a potent inhibitor of CoV-2 3CL pro with suitable pharmaceutical properties to warrant further development as an intravenous treatment for COVID-19. (~450 kDa) and pp1ab (~750 kDa) that contain overlapping sequences and include a 3C-like cysteine protease (3CL pro). The function of this internally encoded 3CL pro is integral to the processing of these proteins and critical for viral replication. 7 The SARS CoV-1 3CL pro shares a high degree of structural homology and similar substrate specificity with the coronavirus 3C-like cysteine proteases of hCoV-229E and TGEV 8 , but is most similar to the SARS CoV-2 3CL pro. Specifically, the SARS CoV-1 and SARS CoV-2 share 96% identity between their respective 3CL pro sequences and 100% identity in the active site. 8 There are numerous reports of reversible cysteine protease inhibitors which include aldehydes 9-12 , thio-or oxymethylketones 13 , cyclic ketones 14 , amidomethylketones 15 , nitriles 16,17 or various 12-283,039 ± 22,586 13 Me 220 ± 0.5 14 cyc-propyl 182 ± 6 15 tert-butyl 230 ± 5 16 Ph 86 ± 3 17 4-OMe-Ph 79 ± 3 18 4-Me-Ph 87 ± 2 19 4-CN-Ph 53 ± 1 20 4-F-Ph 82 ± 3 21 4-Cl-Ph 97 ± 3 22 2,6-(Cl)2-Ph 62,993 ± 2,501 23 2,6-(F)2-Ph 12,776 ± 594 24 2-OH-4-Cl-Ph 11,525 ± 40 25 2-F, 4-CN-Ph 13,321 ± 2,309 26 2,6-(Me)2-Ph 74 ± 4 27 2,6-(MeO)2-Ph 205 ± 2 28 2-CN-Ph 17 ± 2 a See Experimental Section for details on assay methods, values were calculated from at least eight data points with at least two independent determinations.
The novel coronavirus disease COVID-19 that emerged in 2019 is caused by the virus SARS CoV-2 and named for its close genetic similarity to SARS CoV-1 that caused severe acute respiratory syndrome (SARS) in 2002. Both SARS coronavirus genomes encode two overlapping large polyproteins which are cleaved at specific sites by a cysteine 3C-like protease (3CLpro) in a post-translational processing step that is critical for coronavirus replication. The 3CLpro sequences for CoV-1 and CoV-2 viruses are 100% identical in the catalytic domain that carries out protein cleavage. A research effort that focused on the discovery of reversible and irreversible ketone-based inhibitors of SARS CoV-1 3CLpro employing ligand-protease structures solved by X-ray crystallography led to the identification of 3 and 4. Preclinical experiments reveal 4 (PF-00835231) as a potent inhibitor of CoV-2 3CLpro with suitable pharmaceutical properties to warrant further development as an intravenous treatment for COVID-19.
Severe acute respiratory syndrome (SARS) was a worldwide epidemic caused by a coronavirus that has a cysteine protease (3CLpro) essential to its life cycle. Steady-state and pre-steady-state kinetic methods were used with highly active 3CLpro to characterize the reaction mechanism. We show that 3CLpro has mechanistic features common and disparate to the archetypical proteases papain and chymotrypsin. The kinetic mechanism for 3CLpro-mediated ester hydrolysis, including the individual rate constants, is consistent with a simple double displacement mechanism. The pre-steady-state burst rate was independent of ester substrate concentration indicating a high commitment to catalysis. When homologous peptidic amide and ester substrates were compared, a series of interesting observations emerged. Despite a 2000-fold difference in nonenzymatic reactivity, highly related amide and ester substrates were found to have similar kinetic parameters in both the steady-state and pre-steady-state. Steady-state solvent isotope effect (SIE) studies showed an inverse SIE for the amide but not ester substrates. Evaluation of the SIE in the pre-steady-state revealed normal SIEs for both amide and ester burst rates. Proton inventory (PI) studies on amide peptide hydrolysis were consistent with two proton-transfer reactions in the transition state while the ester data was consistent with a single proton-transfer reaction. Finally, the pH-inactivation profile of 3CLpro with iodoacetamide is indicative of an ion-pair mechanism. Taken together, the data are consistent with a 3CLpro mechanism that utilizes an "electrostatic" trigger to initiate the acylation reaction, a cysteine-histidine catalytic dyad ion pair, an enzyme-facilitated release of P1, and a general base-catalyzed deacylation reaction.
Rhodopsin, the photoreceptor molecule of the vertebrate rod cell, is a G protein-coupled receptor. Rhodopsin consists of the opsin apoprotein and its 11-cis-retinal chromophore, which is covalently bound to a specific lysine residue by a stable protonated Schiff base linkage. Rhodopsin activation occurs when light causes photoisomerization of the 11-cis chromophore to its alltrans form. The all-trans chromophore is the receptor agonist. The 11-cis-retinylidene chromophore is analogous pharmacologically to a potent inverse agonist of the receptor. We report here that replacement of a highly conserved glycine residue (Gly 121) causes 11-cisretinal to become a pharmacologic partial agonist. Although the mutant apoproteins do not display constitutive activity, they are active in the dark when bound to an 11-cis-retinylidene chromophore, or to a "locked" chromophore analogue, Ret-7. The degree of partial agonism is directly related to the size of the amino acid replacement at position 121, and it can be reversed by a specific second-site replacement of Phe 261 . Thus, mutation of Gly 121 in rhodopsin causes 11-cis-retinal to act as a partial agonist rather than an inverse agonist, allowing the mutant pigment to activate transducin in the dark.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.