This study applies a comprehensive surrogate-based optimization techniques to optimize the performance of polymer electrolyte membrane fuel cells (PEMFCs). Parametric cases considering four variables are defined using latin hypercube sampling. Training and test data are generated using a multidimensional, two-phase PEMFC simulation model. Response surface approximation, radial basis neural network, and kriging surrogates are employed to construct objective functions for the PEMFC performance. There accuracies are tested and compared using root mean square error and adjusted R-square. Surrogates linked with optimization algorithms, i.e., genetic algorithm and particle swarm optimization are used to determine the optimal design points. Comparative study of these surrogates reveals that the kriging model outperforms the other models in terms of prediction capability. Furthermore, the PEMFC model simulations at the optimal design points demonstrate that performance improvements of around 56–69 mV at 2.0 A/cm2 are achieved with the optimal design compared to typical PEMFC design conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.