Use of adjuvant containing pathogen pattern recognition receptor agonists is one of the effective strategies to enhance the efficacy of licensed vaccines. In this study, we investigated the efficacy of avian influenza vaccines containing an adjuvant (CVCVA5) which was composed of polyriboinosinic polyribocytidylic, resiquimod, imiquimod, muramyl dipeptide and levomisole. Avian influenza vaccines adjuvanted with CVCVA5 were found to induce significantly higher titers of hemagglutiniton inhibition antibodies (P ≤ 0.01) than those of commercial vaccines at 2-, 3- and 4-week post vaccination in both specific pathogen free (SPF) chickens and field application. Furthermore, virus shedding was reduced in SPF chickens immunized with H9-CVCVA5 vaccine after H9 subtype heterologous virus challenge. The ratios of both CD3+CD4+ and CD3+CD8+ lymphocytes were slowly elevated in chickens immunized with H9-CVCVA5 vaccine. Lymphocytes adoptive transfer study indicates that CD8+ T lymphocyte subpopulation might have contributed to improved protection against heterologous virus challenge. Results of this study suggest that the adjuvant CVCVA5 was capable of enhancing the potency of existing avian influenza vaccines by increasing humoral and cellular immune response.
Combination of CVCVA5 adjuvant and commercial avian influenza (AI) vaccine has been previously demonstrated to provide good protection against different AI viruses in chickens. In this study, we further investigated the protective immunity of CVCVA5-adjuvanted oil-emulsion inactivated AI vaccine in chickens, ducks and geese. Compared to the commercial H5 inactivated vaccine, the H5-CVCVA5 vaccine induced significantly higher titers of hemaglutinin inhibitory antibodies in three lines of broiler chickens and ducks, elongated the antibody persistence periods in geese, elevated the levels of cross serum neutralization antibody against different clade and subclade H5 AI viruses in chicken embryos. High levels of mucosal antibody were detected in chickens injected with the H5 or H9-CVCA5 vaccine. Furthermore, cellular immune response was markedly improved in terms of increasing the serum levels of cytokine interferon-γ and interleukine 4, promoting proliferation of splenocytes and upregulating cytotoxicity activity in both H5- and H9-CVCVA5 vaccinated chickens. Together, these results provide evidence that AI vaccines supplemented with CVCVA5 adjuvant is a promising approach for overcoming the limitation of vaccine strain specificity of protection.
The H5 subtype highly pathogenic avian influenza (HPAI) virus is one of the greatest threats to global poultry industry. To develop broadly protective H5 subunit vaccine, a recombinant consensus HA sequence (rHA) was constructed and expressed in virus-like particles (rHA VLPs) in the baculovirus-insect cell system. The efficacy of the rHA VLPs vaccine with or without immunopotentiator (CVCVA5) was assessed in chickens. Compared to the commercial Re6 or Re6-CVCVA5 vaccines, single dose immunization of chickens with rHA VLPs or rHA-CVCVA5 vaccines induced higher levels of serum hemagglutinin inhibition titers and neutralization titers, mucosal antibodies, IFN-γ and IL-4 cytokines in sera, and cytotoxic T lymphocyte responses. The rHA VLPs vaccine was superior to the commercial Re6 vaccine in conferring cross-protection against different clades of H5 subtype viruses. This study reports that H5 subtype consensus HA VLP single dose vaccination provides broad protection against HPAI virus in chickens.
We previously described that immunopotentiators, CVCVA5, increased the efficacy of H5 and H9 subtype avian influenza vaccines in chickens, ducks, and geese. In this study, we further investigated the effects of the CVCVA5 for improving the efficacy of other univalent or multivalent inactivated vaccines. The immune response administrated with half-dose of monovalent vaccine plus CVCVA5 were higher than those of one dose of monovalent vaccine without immunopotentiators as measured by levels of antibodies from serum, tears and bronchoalveolar lavage fluids, and cytokines of IFNγ and IL-4 from serum. Vaccines included the univalent vaccine of Newcastle Disease virus (ND), Egg Drop Syndrome virus (EDS), Infectious Bronchitis virus (IB), and Infectious Bursal Disease virus (IBD). The CVCVA5 also improved the immune response of both ND and IBD vaccines with less dosage. The sterile protective immunity was monitored with one- or a half-dose of adjuvanted ND vaccine or one dose of adjuvanted IBD vaccine, respectively. The improved immune efficacy was observed in a half-dose of adjuvanted bivalent vaccines compared to one dose of vaccines without CVCVA5 as measured by the antibody levels, including bivalent vaccine of ND-H9, ND-IB, and ND-IBD. The CVCVA5 also boosted the immune efficacy of the tetravalent vaccine (ND-IB-EDS-H9). A half-dose of adjuvanted commercial vaccine or 75% antigen-sparing adjuvanted vaccine elicited similar antibody levels to those of one dose non-adjuvanted commercial vaccines. The CVCVA5 improved the effect of a booster vaccination as measured by the antibody levels against H5 or H9 virus antigens, in which chickens primed with the adjuvanted ND-IB vaccines given a booster with H5–H9 bivalent vaccines without CVCVA5 using 5-day intervals. The inflammatory response may contribute to these additional effects by increasing the levels of IFNγ and IL-4 after the injection of the adjuvanted ND-IB vaccines. Results indicated that the CVCVA5 improved the serum and mucosal antibody levels, cytokine levels of the chickens given the univalent vaccine, and also improved serum antibody titers in bivalent and tetravalent vaccines. This has a potential as an improve vaccine.
Subunit vaccines capable of inducing antibody against both infectious bursal disease virus (IBDV) and H9 subtype avian influenza virus (AIV) were developed. The VP2 protein of IBDV was used as a cargo protein to display a 12-amino-acid immunodominant epitope derived from the N-terminal M2 extracellular domain (nM2e) of the H9 subtype AIV. Two chimaeric proteins were constructed by insertion of one copy of the nM2e into the PBC region (VP2BCnM2e(H9)) or by fusing four copies of nM2e to the carboxyl terminal (VP2-4nM2e(H9)) of VP2. Genes that encoded the VP2 chimaeras were subsequently cloned into a baculovirus vector and expressed in Spodoptera frugiperda cells. The recombinant proteins were used to vaccinate chickens at day 0 and again after 4 weeks. Blood was collected at 2-week intervals after primary and secondary vaccination to detect the antibody titre against VP2 or the nM2e via indirect enzyme-linked immunosorbent assay. Virus neutralization tests were also performed to measure anti-IBDV or anti-H9 AIV neutralizing antibodies in chick embryo fibroblasts. Oropharyngeal and cloacal swabs were collected 3, 5 and 7 days post H9 subtype AIV infection for virus isolation. Vaccination with VP2-4nM2e(H9) induced higher levels of antibody responses against IBDV or H9 subtype AIV, and provided better protection against an IBDV virulent challenge compared with vaccination with VP2BCnM2e(H9) vaccine, the wild-type VP2 subunit vaccine or the IBDV subunit commercial vaccines. Both chimaeric VP2 vaccines showed poor efficacy in inhibiting H9 virus replication post challenge. In summary, chimaeric proteins that contain the nM2e epitope were able to induce both IBDV and H9 subtype AIV-neutralizing antibody responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.