Fluid penetration from water-based muds into shale formations results in swelling and subsequent wellbore instability. Particles in conventional drilling fluids are too large to seal the nano-sized pore throats of shales and to build an effective mudcake on the shale surface and reduce fluid invasion. This paper presents laboratory data showing the positive effect of adding commercially available, inexpensive, nonmodified silica nanoparticles (NP) (particle sizes vary from 5 to 22 nm) to water-based drilling muds and their effect on water invasion into shale.Six brands of commercial and nonmodified nanoparticles were tested and screened by running a three-step pressure penetration (PP) test (brine, base mud, nanoparticle mud). Two types of common water-based muds, a bentonite mud and a low-solids mud (LSM), in contact with Atoka shale were studied with and without the addition of 10 wt% nanoparticles. We found that a large reduction in shale permeability was observed when using the muds to which the nonmodified nanoparticles had been added. For the bentonite muds, the permeability of Atoka shale decreased by 57.72 to 99.33%, and, for the LSMs, the permeability of Atoka shale decreased by 45.67 to 87.63%. Higher plastic viscosity (PV) and lower yield point (YP) and fluid loss (FL) of the nanoparticle muds compared with base muds were also observed. We also found that nanoparticles varying in size from 7 to 15 nm and a concentration of 10 wt% are shown to be effective at reducing shale permeability, thereby reducing the interaction between Atoka shale and a waterbased drilling fluid.This study shows for the first time that it is possible to formulate water-based muds using inexpensive nonmodified and commercially available silica nanoparticles and that these muds significantly reduce the invasion of water into the shale. The addition of silica nanoparticles to water-based muds may offer a powerful and economical solution when dealing with wellbore-stability problems in troublesome shale formations.
Coalbed methane (CBM) reservoirs in China are featured in remarkable nanosized pores below 200 nm, acknowledged natural cleats, and tectonic fractures. This paper discussed the possibility that a clay free microfoamed drilling fluid could be stabilized by silica nanoparticles (CFMDF-NP) so as to avoid formation damage of CBM drilling. In accordance with the experimental results of foaming capacity and foam stability test, basic drilling fluid performance appraisal, micromorphology observation, swelling test, and gas permeability test, the mechanism of the CFMDF-NP was discussed in this paper. The results indicated that, with 10–20 nm nano-SiO2, the foaming volume of traditional foamed drilling fluid could be improved by up to 50% and an increased half-life period by up to 200%. Chemically treated nano-SiO2dispersions functioned as a foam stabilizer and a foaming agent as well. The CFMDF-NP had controllable density (0.7~1 g/cm3) and excellent rheological and sealing properties, which could satisfy the drilling requirements of the low pressure coal seams. With 5–8 mm slicing on the contaminated side of coal cores, the contaminated zone could be removed and the recovery rate of gas permeability could reach up to 70%. The CFMDF-NP laid good technical foundation to decrease formation damage of CBM reservoir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.