Platelet rich fibrin (PRF) has been utilized clinically as a platelet concentrate capable of stimulating tissue regeneration. Interestingly, several protocols have been proposed with little data obtained regarding the final cell counts following centrifugation. The aim of the present study was to compare different commercially available centrifuges and their respective protocols utilizing a novel method to quantify cells. One millimeter blood layers following centrifugation were sequentially pipetted from the upper layer downward until all 10 mL were harvested in sequential samples. Thereafter, each sample was sent for CBC analysis to accurately quantify precisely cell numbers within each separate blood layer following centrifugation. The results from this study revealed that L-PRF protocols (2700 rpm × 12 min) produced a clot with the majority of platelets and leukocytes concentrated within the buffy coat with relatively no cells found within the first 4 mL of L-PRF. Slower centrifugation protocols produced using the A-PRF protocols (1300 rpm × 8 min) produced a more evenly distributed number of platelets throughout PRF. Injectable-PRF (i-PRF) protocols produced the highest concentration of leukocytes/platelets, however, the total number of leukocytes and platelets were significantly lower owing to the decreased total volume collected. Horizontal centrifugation produced a significant increase in both the number and concentration of platelets and leukocytes (up to 3.5× higher for either solid/liquid PRF). When compared to either fixed or angled centrifuge (InstraSpin, Process for PRF). In conclusion, the present study revealed a novel/accurate method to quantify cells following PRF protocols. Furthermore, PRF produced via horizontal centrifugation accumulated a higher number and concentration of platelets/leukocytes when compared to either fixed-angle centrifugation. K E Y W O R D S blood platelets, centrifugation, fibrin, platelet rich fibrin
N 6 -methyladenosine (m 6 A) is a commonly present modification of mammalian mRNAs and plays key roles in various cellular processes. m 6 A modifiers catalyze this reversible modification. However, the underlying mechanisms by which these m 6 A modifiers are regulated remain elusive. Here we show that expression of m 6 A demethylase ALKBH5 is regulated by chromatin state alteration during leukemogenesis of human acute myeloid leukemia (AML), and ALKBH5 is required for maintaining leukemia stem cell (LSC) function but is dispensable for normal hematopoiesis. Mechanistically, KDM4C regulates ALKBH5 expression via increasing chromatin accessibility of ALKBH5 locus, by reducing H3K9me3 levels and promoting recruitment of MYB and Pol II. Moreover, ALKBH5 affects mRNA stability of receptor tyrosine kinase AXL in an m 6 Adependent way. Thus, our findings link chromatin state dynamics with expression regulation of m 6 A modifiers and uncover a selective and critical role of ALKBH5 in AML that might act as a therapeutic target of specific targeting LSCs.
Objectives Platelet-rich fibrin (PRF) has gained tremendous momentum in recent years as a natural autologous growth factor derived from blood capable of stimulating tissue regeneration. Owing to its widespread use, many companies have commercialized various centrifugation devices with various proposed protocols. The aim of the present study was to compare 3 different commercially available centrifuges at both high and low g-force protocols. Materials and methods PRF was produced on three commercially available centrifuges including the IntraSpin Device (IntraLock), the Duo Quattro (Process for PRF), and Salvin (Salvin Dental). Two separate protocols were tested on each machine including the original leukocyte and platelet-rich fibrin (L-PRF) protocol (~700 RCF max (~400 RCF clot) for 12 min) as well as the advanced platelet-rich fibrin (A-PRF+) protocol (~200 g RCF max (~130 g RCF clot) for 8 min). Each of the tested groups was compared for cell numbers, growth factor release, scanning electron microscopy (SEM) for morphological differences, and clot size (both weight and length/width).Results The present study found that PRF clots produced utilizing the low-speed centrifugation speeds (~200 g for 8 min) produce clots that (1) contained a higher concentration of evenly distributed platelets, (2) secreted higher concentrations of growth factors over a 10 day period, and (3) were smaller in size. This was irrespective of the centrifugation device utilized and consistently observed on all 3 devices. The greatest impact was found between the protocols utilized (up to a 200%). Interestingly, it was further revealed that the centrifugation tubes used had a much greater impact on the final size outcome of PRF clots when compared to centrifugation devices. It was found that, in general, the Process for PRF tubes produced significantly greater-sized clots when compared to other commercially available tubes. The Salvin Dental tubes also produced significantly greater PRF clots when compared to the IntraLock tubes on each of the tested centrifugation devices. Conclusions The present study demonstrated the reproducibility of a scientific concept (reduction in RCF produces PRF clots with more evenly distributed cells and growth factors) utilizing different devices. Furthermore, (and until now overlooked), it was revealed for the first time that the centrifugation tubes are central to the quality production of PRF. Future research investigating tube characteristics thus becomes critically important for the future optimization of PRF.
RNA-binding proteins (RBPs) are critical regulators of transcription and translation that are often dysregulated in cancer. Although RBPs are increasingly appreciated as being important for normal hematopoiesis and for hematological malignancies as oncogenes or tumor suppressors, essential RBPs for leukemia maintenance and survival remain elusive. Here we show that YBX1 is specifically required for maintaining myeloid leukemia cell survival in an m6A-dependent manner. We found that expression of YBX1 is significantly upregulated in myeloid leukemia cells, and deletion of YBX1 dramatically induces apoptosis, promotes differentiation, coupled with reduced proliferation and impaired leukemic capacity of primary human and mouse acute myeloid leukemia (AML) cells in vitro and in vivo. Loss of YBX1 does not obviously affect normal hematopoiesis. Mechanistically, YBX1 interacts with IGF2BPs and stabilizes m6A-tagged RNA. Moreover, YBX1 deficiency dysregulates the expression of apoptosis-related genes, and promotes mRNA decay of MYC and BCL2 in an m6A-dependent manner, which contributes to the defective survival due to YBX1 deletion. Thus, our findings uncover a selective and critical role of YBX1 in maintaining myeloid leukemia survival that might provide a rationale for the therapeutic targeting of YBX1 in myeloid leukemia.
Concentrated growth factor, a novel autologous plasma extract, contained various growth factors which promoted tissue regeneration. In this study, we aimed to investigate the biological effects of concentrated growth factor on human dental pulp stem cells. The microstructure and biocompatibility of concentrated growth factor scaffolds were evaluated by scanning electron microscopy. Cell proliferation and migration, odontoblastic and endothelial cell differentiation potential were assessed after exposing dental pulp stem cells to different concentrations (5%, 10%, 20%, 50%, or 80%) of concentrated growth factor extracts. The results revealed that concentrated growth factor scaffolds possessed porous fibrin network with platelets and leukocytes, and showed great biocompatibility with dental pulp stem cells. Higher cell proliferation rates were detected in the concentrated growth factor-treated groups in a dose-dependent manner. Interestingly, in comparison to the controls, the low doses (<50%) of concentrated growth factor increased cell migration, alkaline phosphatase activity, and mineralized tissue deposition, while the cells treated in high doses (50% or 80%) showed no significant difference. After stimulating cell differentiation, the expression levels of dentin matrix protein-1, dentin sialophosphoprotein, vascular endothelial growth factor receptor-2 and cluster of differentiation 31 were significantly upregulated in concentrated growth factor-supplemented groups than those of the controls. Furthermore, the dental pulp stem cell-derived endothelial cells co-induced by 5% concentrated growth factor and vascular endothelial growth factor formed the most amount of mature tube-like structures on Matrigel among all groups, but the high-dosage concentrated growth factor exhibited no or inhibitory effect on cell differentiation. In general, our findings confirmed that concentrated growth factor promoted cell proliferation, migration, and the dental pulp stem cell-mediated dentinogenesis and angiogenesis process, by which it might act as a growth factor-loaded scaffold to facilitate dentin-pulp complex healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.