To prevent serious shaft deflection disasters under asymmetric mining conditions, it is urgent to solve the problem of designing shaft protection rock pillar (SPRP) sizes in thick soil and thin rock strata. In this paper, based on the parallel mining model and the perpendicular mining model, a dynamic prediction model that can describe the horizontal movement of the shaft was established by the probability integration method and the Knothe time function. Next, according to the measured data of the shaft deflection in the Guotun Coal Mine, a back analysis was used to calculate the prediction parameters that were suitable for the deep soil strata. Based on the mining model, the variation law of the horizontal deflection displacement of the shaft and SPRP size was obtained. The results showed that the final displacements of the shaft under the two ideal mining models were equal, while the parallel mining model was superior to the perpendicular mining model at the initial stage of mining. The horizontal displacement of the shaft head had a nonlinear negative correlation with the SPRP, and the SPRP size in thick soil and thin rock strata calculated by the parallel mining model was more reasonable. For the Guotun Coal Mine, when the soil movement angle was 57.8% of the actual value, the horizontal displacement of the main shaft head was reduced by 87%. The results have important theoretical and practical value in preventing shaft deflection in thick soil and thin rock strata.
With the increase in shaft depth, the problem of cracks and leakage in single-layer concrete lining in porous water-rich stable rock strata has become increasingly clear, in which case the mechanism of fracturing in shaft lining remains unclear. Considering that the increase in pore water pressure can cause rock mass expansion, this paper presents the concept of hydraulic expansion coefficient. First, a cubic model containing spherical pores is established for studying hydraulic expansion, and the ANSYS numerical simulation, a finite element numerical method, was used for calculating the volume change of the model under the pore water pressure. By means of the multivariate nonlinear regression method, the regression equation of the hydraulic expansion coefficient is obtained. Second, based on the hydraulic expansion effect on the rock mass, an interaction model of pore water pressure–porous rock–shaft lining is established and further solved. Consequently, the mechanism of fracturing in shaft lining caused by high-pressure pore water is revealed. The results show that the hydraulic expansion effect on the surrounding rock increases with its porosity and decreases with its elastic modulus and Poisson’s ratio; the surrounding rock expansion caused by the change in pore water pressure can result in the outer edge of the lining peeling off from the surrounding rock and tensile fracturing at the inner edge. Therefore, the results have a considerable guiding significance for designing shaft lining through porous water-rich rock strata.
Rock properties (e.g., brittleness, fracture toughness, hardness, compressive strength and tensile strength), cutting parameters (e.g., cutting depth, attack angle, wedge angle, cutting velocity) and confining stress are closely related to rock fragmentation behaviors in the design and application of excavation and mining machinery. To investigate the influence mechanism of those factors on rock fragmentation, a series of linear cutting numerical tests were conducted using the discrete element method. Numerical models with different rock mechanical parameters were calibrated by changing the cohesion strength-to-tensile strength ratio of the linear parallel bond model in PFC2D. The effects of cutting parameters on rock fragmentation were studied using orthogonal test and range analysis. The numerical results indicated that the strength ratio had a dominant effect on the specific energy and that the cutting depth and attack angle had a dominant effect on the mean cutting force. The cutting velocity significantly influenced the specific energy, and a higher cutting velocity should be adopted in actual rock cutting. In addition, a cutting force prediction model was proposed that considered factors such as the compressive strength, wedge angle, attack angle and cutting depth. Moreover, the introduction of more rock mechanical parameters into the evaluation indicators can reflect a greater number of fragmentation characteristics.
Indentation hardness and brittleness are the important factors to be considered in the study of rock-like materials’ mechanical crushing behaviors. The brittleness of rock-like materials is defined as the ratio of uniaxial compressive strength to tensile strength in this paper. In order to investigate the influences of hardness and brittleness on rock-like materials’ crushing behaviors, quartz sand and high strength α-hemi-hydrated gypsum were used to prepare rock-like materials with different hardness and brittleness through different mass ratios. The artificial rock-like materials can eliminate the effects of natural rock’s weak structure plane on experimental results. The indentation test, Uniaxial compressive test, and Brazilian tensile test were conducted for characterizing the indentation hardness and brittleness of this artificial rock-like materials. The experimental results showed that brittleness increased with the increase of indentation hardness with high correlation coefficient. The confining stress presented a positive impact on the indentation hardness of the rock-like materials. Based on those mechanical properties, the numerical rock models were calculated to study rock crushing behaviors using discrete element method (DEM). A series of rock crushing tests were conducted to investigate the influences of hardness and brittleness of rock-like materials on rock crushing behaviors using a conical pick cutter. The numerical results showed that the normalized specific energy was negatively correlated with indentation hardness index (IHI). The normalized specific energy decreased with the increase of brittleness index (BI) with a high correlation coefficient. This study is beneficial in utilizing IHI and BI to evaluate the mechanical properties, failure patterns, and mechanical crushing efficiency of rock-like materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.