Semiconducting two-dimensional (2D) materials, particularly extremely thin molybdenum disulfide (MoS) films, are attracting considerable attention from academia and industry owing to their distinctive optical and electrical properties. Here, we present the direct growth of a MoS monolayer with unprecedented spatial and structural uniformity across an entire 8 inch SiO/Si wafer. The influences of growth pressure, ambient gases (Ar, H), and S/Mo molar flow ratio on the MoS layered growth were explored by considering the domain size, nucleation sites, morphology, and impurity incorporation. Monolayer MoS-based field effect transistors achieve an electron mobility of 0.47 cm V s and on/off current ratio of 5.4 × 10. This work demonstrates the potential for reliable wafer-scale production of 2D MoS for practical applications in next-generation electronic and optical devices.
Batch growth of high-mobility (μFE > 10 cm2V–1s–1) molybdenum disulfide (MoS2) films can be achieved by means of the chemical vapor deposition (CVD) method at high temperatures (>500 °C) on rigid substrates. Although high-temperature growth guarantees film quality, time- and cost-consuming transfer processes are required to fabricate flexible devices. In contrast, low-temperature approaches (<250 °C) for direct growth on polymer substrates have thus far achieved film growth with limited spatial homogeneity and electrical performance (μFE is unreported). The growth of a high-mobility MoS2 film directly on a polymer substrate remains challenging. In this study, a novel low-temperature (250 °C) process to successfully overcome this challenge by kinetics-controlled metal–organic CVD (MOCVD) is proposed. Low-temperature MOCVD was achieved by maintaining the flux of an alkali-metal catalyst constant during the process; furthermore, MoS2 was directly synthesized on a polyimide (PI) substrate. The as-grown film exhibits a 4 in. wafer-scale uniformity, field-effect mobility of 10 cm2V–1s–1, and on/off ratio of 105, which are comparable with those of high-temperature-grown MoS2. The directly fabricated flexible MoS2 field-effect transistors demonstrate excellent stability of electrical properties following a 1000 cycle bending test with a 1 mm radius.
Molybdenum disulfide (MoS), a well-known solid lubricant for low friction surface coatings, has recently drawn attention as an analogue two-dimensional (2D) material beyond graphene. When patterned to produce vertically grown, nanoflower-structures, MoS shows promise as a functional material for hydrogen evolution catalysis systems, electrodes for alkali metal-ion batteries, and field-emission arrays. Whereas the wettability of graphene has been substantially investigated, that of MoS structures, especially nanoflowers, has remained relatively unexplored despite MoS nanoflower's potential in future applications. Here, we demonstrate that the wettability of MoS can be controlled by multiscale modulation of surface roughness through (1) tuning of the nanoflower structures by chemical vapor deposition synthesis and (2) tuning of microscale topography via mechanical strain. This multiscale modulation offers broadened tunability (80-155°) compared to single-scale tuning (90-130°). In addition, surface adhesion, determined from contact angle hysteresis (CAH), can also be tuned by multiscale surface roughness modulation, where the CAH is changed in range of 20-40°. Finally, the wettability of crumpled MoS nanoflowers can be dynamically and reversibly controlled through applied strain (∼115-150° with 0-200% strain), and remains robust over 1000 strain cycles. These studies on the tunable wettability of MoS will contribute to future MoS-based applications, such as tunable wettability coatings for desalination and hydrogen evolution.
A two-dimensional molybdenum disulfide (MoS2)-based gas sensor was decorated with Pt nanoparticles (NPs) for high sensitivity and low limit of detection (LOD) for specific gases (NH3 and H2S). The two-dimensional MoS2 film was grown at 400°C using metal organic gas vapour deposition. To fabricate the MoS2 gas sensor, an interdigitated Au/Ti electrode was deposited using the electron beam (e-beam) evaporation method with a stencil mask. The MoS2 gas sensor without metal decoration sensitively detects NH3 and H2S gas down to 2.5 and 30 ppm, respectively, at room temperature (RT). However, for improved detection of NH3 and H2S gas, we investigated the functionalization strategy using metal decoration. Pt NP decoration modulated the electronic properties of MoS2, significantly improving the sensitivity of NH3 and H2S gas by 5.58× and 4.25×, respectively, compared with the undecorated MoS2 gas sensor under concentrations of 70 ppm. Furthermore, the Pt NP-decorated MoS2 sensor had lower LODs for NH3 and H2S gas of 130 ppb and 5 ppm, respectively, at RT.
Layered molybdenum disulphide was grown at a low-temperature of 350 °C using chemical vapour deposition by elaborately controlling the cluster size. The molybdenum disulphide grown under various sulphur-reaction-gas to molybdenum-precursor partial-pressure ratios were examined. Using spectroscopy and microscopy, the effect of the cluster size on the layered growth was investigated in terms of the morphology, grain size, and impurity incorporation. Triangular single-crystal domains were grown at an optimized sulphur-reaction-gas to molybdenum-precursor partial-pressure ratio. Furthermore, it is proved that the nucleation sites on the silicon-dioxide substrate were related with the grain size. A polycrystalline monolayer with the 100-nm grain size was grown on a nucleation site confined substrate by high-vacuum annealing. In addition, a field-effect transistor was fabricated with a MoS2 monolayer and exhibited a mobility and on/off ratio of 0.15 cm2 V−1 s−1 and 105, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.