There is a growing need to develop novel strategies for the diagnosis of schizophrenia using neuroimaging biomarkers. We investigated the robustness of the diagnostic model for schizophrenia using radiomic features from T1-weighted and diffusion tensor images of the corpus callosum (CC). A total of 165 participants [86 schizophrenia and 79 healthy controls (HCs)] were allocated to training (N = 115) and test (N = 50) sets. Radiomic features of the CC subregions were extracted from T1-weighted, apparent diffusion coefficient (ADC), and fractional anisotropy (FA) images (N = 1605). Following feature selection, various combinations of classifiers were trained, and Bayesian optimization was adopted in the best performing classifier. Discrimination, calibration, and clinical utility of the model were assessed. An online calculator was constructed to offer the probability of having schizophrenia. SHapley Additive exPlanations (SHAP) was applied to explore the interpretability of the model. We identified 30 radiomic features to differentiate participants with schizophrenia from HCs. The Bayesian optimized model achieved the highest performance, with an area under the curve (AUC), accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.81–0.98), 80.0, 83.3, and 76.9%, respectively, in the test set. The final model offers clinical probability in an online calculator. The model explanation by SHAP suggested that second-order features from the posterior CC were highly associated with the risk of schizophrenia. The multiparametric radiomics model focusing on the CC shows its robustness for the diagnosis of schizophrenia. Radiomic features could be a potential source of biomarkers that support the biomarker-based diagnosis of schizophrenia and improve the understanding of its neurobiology.
Context Early identification of the response of prolactinoma patients to dopamine agonists (DA) is crucial in treatment planning. Objective To develop a radiomics model using an ensemble machine learning classifier with conventional magnetic resonance images (MRIs) to predict the DA response in prolactinoma patients. Design Retrospective study Setting Severance Hospital Patients A total of 177 prolactinoma patients who underwent baseline MRI (109 DA responders and 68 DA non-responders) were allocated to the training (n = 141) and test (n = 36) sets. Radiomic features (n = 107) were extracted from coronal T2-weighed MRIs. After feature selection, single models (random forest, light gradient boosting machine, extra-trees, quadratic discrimination analysis, and linear discrimination analysis) with oversampling methods were trained to predict the DA response. A soft voting ensemble classifier was used to achieve the final performance. The performance of the classifier was validated in the test set. Results The ensemble classifier showed an area under the curve (AUC) of 0.81 (95 % confidence interval [CI], 0.74–0.87) in the training set. In the test set, the ensemble classifier showed an AUC, accuracy, sensitivity, and specificity of 0.81 (95 % CI, 0.67–0.96), 77.8 %, 78.6 %, and 77.3 %, respectively. The ensemble classifier achieved the highest performance among all the individual models in the test set. Conclusions Radiomic features may be useful biomarkers to predict the DA response in prolactinoma patients.
Objectives This study investigated whether radiomic features can improve the prediction accuracy for tumor recurrence over clinicopathological features and if these features can be used to identify high-risk patients requiring adjuvant radiotherapy (ART) in WHO grade 2 meningiomas. Methods Preoperative magnetic resonance imaging (MRI) of 155 grade 2 meningioma patients with a median follow-up of 63.8 months were included and allocated to training (n = 92) and test sets (n = 63). After radiomic feature extraction (n = 200), least absolute shrinkage and selection operator feature selection with logistic regression classifier was performed to develop two models: (1) a clinicopathological model and (2) a combined clinicopathological and radiomic model. The probability of recurrence using the combined model was analyzed to identify candidates for ART. Results The combined clinicopathological and radiomics model exhibited superior performance for the prediction of recurrence compared with the clinicopathological model in the training set (area under the curve [AUC] 0.78 vs. 0.67, P = 0.042), which was also validated in the test set (AUC 0.77 vs. 0.61, P = 0.192). In patients with a high probability of recurrence by the combined model, the 5-year progression-free survival was significantly improved with ART (92% vs. 57%, P = 0.024), and the median time to recurrence was longer (54 vs. 17 months after surgery). Conclusions Radiomics significantly contributes added value in predicting recurrence when integrated with the clinicopathological features in patients with grade 2 meningiomas. Furthermore, the combined model can be applied to identify high-risk patients who require ART.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.