SummaryA unique GTP-binding protein, Der contains two consecutive GTP-binding domains at the N-terminal region and its homologues are highly conserved in eubacteria but not in archaea and eukaryotes. In the present paper, we demonstrate that Der is one of the essential GTPases in Escherichia coli and that the growth rate correlates with the amount of Der in the cell. Interestingly, both GTP-binding domains are required at low temperature for cell growth, while at high temperature either one of the two domains is dispensable. Result of the sucrose density gradient experiment suggests that Der interacts specifically with 50S ribosomal subunits only in the presence of a GTP analogue, GMPPNP. The depletion of Der accumulates 50S and 30S ribosomal subunits with a concomitant reduction of polysomes and 70S ribosomes. Notably, Der-depleted cells accumulate precursors of both 23S and 16S rRNAs. Moreover, at lower Mg 2+ concentration, 50S ribosomal subunits from Derdepleted cells are further dissociated into aberrant 50S ribosomal subunits; however, 30S subunits are stable. It was revealed that the aberrant 50S subunits, 40S subunits, contain less ribosomal proteins with significantly reduced amounts of L9 and L18. These results suggest that Der is a novel 50S ribosomeassociated factor involved in the biogenesis and stability of 50S ribosomal subunits. We propose that Der plays a pivotal role in ribosome biogenesis possibly through interaction with rRNA or rRNA/r-protein complex.
The EngA subfamily of essential bacterial GTPases has a unique domain structure consisting of two adjacent GTPase domains (GD1 and GD2) and a C-terminal domain. The structure of Thermotoga maritima Der bound to GDP determined at 1.9 A resolution reveals a novel domain arrangement in which the GTPase domains pack at either side of the C-terminal domain. Unexpectedly, the C-terminal domain resembles a KH domain, missing the distinctive RNA recognition elements. Conserved motifs of the nucleotide binding site of GD1 are integral parts of the GD1-KH domain interface, suggesting the interactions between these two domains are directly influenced by the GTP/GDP cycling of the protein. In contrast, the GD2-KH domain interface is distal to the GDP binding site of GD2.
A gene encoding a putative GTPase containing two tandemly repeated GTP-binding domains from a hyperthermophilic bacterium, Thermotoga maritima, was cloned and expressed in Escherichia coli. The gene (TM1446) termed der is highly conserved in Eubacteria including E. coli. The purified der product (Tm-Der) has GTPase activity but no ATPase activity. GTP, GDP, and dGTP but not GMP, ATP, CTP, and UTP compete for GTP binding to Tm-Der. An optimal condition for the GTPase assay was determined to be pH 7.5 in 400 mM KCl and 5 mM MgCl 2 at 70°C, where K m , V max , and k cat values were determined to be 110 M, 3.46 M/min, and 0.87 min ؊1 , respectively. A der deletion strain of E. coli was constructed by replacing the der gene (originally annotated yfgK) with a kanamycin resistance gene. The deletion strain was found to form colonies only if the cells harbored a plasmid containing der, indicating that der is essential for E. coli growth.
UBE2N is a K63-specific ubiquitin conjugase linked to various immune disorders and cancer. Here, we demonstrate that UBE2N and its partners UBE2V1 and UBE2V2 are highly expressed in malignant melanoma. Silencing of UBE2N and its partners significantly decreased melanoma cell proliferation and subcutaneous tumor growth. This was accompanied by increased expression of E-cadherin, p16, and MC1R and decreased expression of melanoma malignancy markers including SOX10, Nestin, and ABCB5. Mass spectrometry-based phosphoproteomic analysis revealed that UBE2N loss resulted in distinct alterations to the signaling landscape: MEK/ERK signaling was impaired, FRA1 and SOX10 gene regulators were downregulated, and p53 and p16 tumor suppressors were upregulated. Similar to inhibition of UBE2N and MEK, silencing FRA1 decreased SOX10 expression and cell proliferation. Conversely, exogenous expression of active FRA1 increased pMEK and SOX10 expression, and restored anchorage-independent cell growth of cells with UBE2N loss. Systemic delivery of NSC697923, a small-molecule inhibitor of UBE2N, significantly decreased melanoma xenograft growth. These data indicate that UBE2N is a novel regulator of the MEK/FRA1/SOX10 signaling cascade and is indispensable for malignant melanoma growth. Our findings establish the basis for targeting UBE2N as a potential treatment strategy for melanoma. These findings identify ubiquitin conjugase UBE2N and its variant partners as novel regulators of MAPK signaling and potential therapeutic targets in melanoma. .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.