Log-Structured Merge-tree (LSM-tree) organizes write-friendly and hierarchical structure, which leads to inevitable disk I/O from data compaction occuring between layers. Previous research tried to reduce write bottlenecks of LSM-tree by using non-volatile memory (NVM) to LSM-tree, but write amplification on compaction does not resolved. In this paper, we present tiered LSM (TLSM), a persistent LSM-based key-value database tiering NVM, which is regarded as fast storage device. Our design aims to exploit multi-layered LSM system utilizing NVM and reduce redundant cost on compaction. We address 4 key points: (1) analysis of disk I/O overhead on current LSM-tree, (2) novel design of TLSM preserving the concept of LSM-tree and utilizing NVM, (3) persistent and byte-addressable data compaction minimizing disk write, and (4) tiering policy for increasing usability to TLSM. To implement TLSM-tree, we extended LevelDB, which is a simple LSM-based key-value store. On micro-benchmark DB Bench, the write and read latencies of TLSM are improved up to 34% and 57%, respectively, compared to those of LevelDB-NVM. In evaluation of YCSB, TLSM also reduces the write and read latencies of existing LevelDB up to 25%, 33%, respectively. Furthermore, frequency of write stall and total amount of data write are reduced significantly in TLSM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.