Nonrelativistic string theory is a unitary, ultraviolet finite quantum gravity theory with a nonrelativistic string spectrum. The vertex operators of the worldsheet theory determine the spacetime geometry of nonrelativistic string theory, known as the string Newton-Cartan geometry. We compute the Weyl anomaly of the nonrelativistic string worldsheet sigma model describing strings propagating in a string Newton-Cartan geometry, Kalb-Ramond and dilaton background. We derive the equations of motion that dictate the backgrounds on which nonrelativistic string theory can be consistently defined quantum mechanically. The equations of motion we find from our study of the conformal anomaly of the worldsheet theory are to nonrelativistic string theory what the (super)gravity equations of motion are to relativistic string theory.
In the presence of an Ω-deformation, local operators generate a chiral algebra in the topological-holomorphic twist of a four-dimensional N = 2 supersymmetric field theory. We show that for a unitary N = 2 superconformal field theory, the chiral algebra thus defined is isomorphic to the one introduced by Beem et al. Our definition of the chiral algebra covers nonconformal theories with insertions of suitable surface defects. 21A Ω-deformations for vector and chiral multiplets 23
We construct an index for BPS operators supported on a ray in five dimensional superconformal field theories with exceptional global symmetries. We compute the E n representations (for n = 2, . . . , 7) of operators of low spin, thus verifying that while the expression for the index is only SO(2n − 2)×U(1) invariant, the index itself exhibits the full E n symmetry (at least up to the order we expanded). The ray operators we studied in 5d can be viewed as generalizations of operators constructed in a Yang-Mills theory with fundamental matter by attaching an open Wilson line to a quark. For n ≤ 7, in contrast to local operators, they carry nontrivial charge under the Z 9−n ⊂ E n center of the global symmetry. The representations that appear in the ray operator index are therefore different, for n ≤ 7, from those appearing in the previously computed superconformal index. For 3 ≤ n ≤ 7, we find that the leading term in the index is a character of a minuscule representation of E n . We also discuss the case n = 8, which presents a unique technical challenge, and remains an open problem. arXiv:1608.06284v2 [hep-th]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.