Extensive sea ice over Arctic regions is largely involved in heat, moisture, and momentum exchanges between the atmosphere and ocean. Some previous studies have been conducted to develop statistical models for the status of Arctic sea ice and showed considerable possibilities to explain the impacts of climate changes on the sea ice extent. However, the statistical models require improvements to achieve better predictions by incorporating techniques that can deal with temporal variation of the relationships between sea ice concentration and climate factors. In this paper, we describe the statistical approaches by ordinary least squares (OLS) regression and a time-series method for modeling sea ice concentration using satellite imagery and climate reanalysis data for the Barents and Kara Seas during 1979-2012. The OLS regression model could summarize the overall climatological characteristics in the relationships between sea ice concentration and climate variables. We also introduced autoregressive integrated moving average (ARIMA) models because the sea ice concentration is such a long-range dataset that the relationships may not be explained by a single equation of the OLS regression. Temporally varying
OPEN ACCESSRemote Sens. 2014, 6 5521 relationships between sea ice concentration and the climate factors such as skin temperature, sea surface temperature, total column liquid water, total column water vapor, instantaneous moisture flux, and low cloud cover were modeled by the ARIMA method, which considerably improved the prediction accuracies. Our method may also be worth consideration when forecasting future sea ice concentration by using the climate data provided by general circulation models (GCM).
Satellite remote sensing can measure large ocean surface areas, but the infrared-based sea surface temperature (SST) might not be correctly calculated for the pixels under clouds, resulting in missing values in satellite images. Early studies for the gap-free raster maps of satellite SST were based on spatial interpolation using in situ measurements. In this paper, however, an alternative spatial gap-filling method using regression residual kriging (RRK) for the Geostationary Korea Multi-Purpose Satellite-2A (GK2A) daily SST was examined for the seas around the Korean Peninsula. Extreme outliers were first removed from the in situ measurements and the GK2A daily SST images using multi-step statistical procedures. For the pixels on the in situ measurements after the quality control, a multiple linear regression (MLR) model was built using the selected meteorological variables such as daily SST climatology value, specific humidity, and maximum wind speed. The irregular point residuals from the MLR model were transformed into a residual grid by optimized kriging for the residual compensation for the MLR estimation of the null pixels. The RRK residual compensation method improved accuracy considerably compared with the in situ measurements. The gap-filled 18,876 pixels showed the mean bias error (MBE) of −0.001 °C, the mean absolute error (MAE) of 0.315 °C, the root mean square error (RMSE) of 0.550 °C, and the correlation coefficient (CC) of 0.994. The case studies made sure that the gap-filled SST with RRK had very similar values to the in situ measurements to those of the MLR-only method. This was more apparent in the typhoon case: our RRK result was also stable under the influence of typhoons because it can cope with the abrupt changes in marine meteorology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.