Appropriate rehabilitation of stroke patients at a very early phase results in favorable outcomes. However, the optimal strategy for very early rehabilitation is at present unclear due to the limited knowledge on the effects of very early initiation of rehabilitation based on voluntary exercise (VE). Environmental enrichment (EE) is a therapeutic paradigm for laboratory animals that involves complex combinations of physical, cognitive, and social stimuli, as well as VE. Few studies delineated the effect of EE on apoptosis in very early stroke in an experimental model. Although a minimal benefit of early rehabilitation in stroke models has been claimed in previous studies, these were based on a forced exercise paradigm. The aim of this study is to determine whether very early exposure to EE can effectively regulate Fas/FasL-mediated apoptosis following hypoxic–ischemic (HI) brain injury and improve neurobehavioral function. C57Bl/6 mice were housed for 2 weeks in either cages with EE or standard cages (SC) 3 h or 72 h after HI brain injury. Very early exposure to EE was associated with greater improvement in motor function and cognitive ability, reduced volume of the infarcted area, decreased mitochondria-mediated apoptosis, and decreased oxidative stress. Very early exposure to EE significantly downregulated Fas/FasL-mediated apoptosis, decreased expression of Fas, Fas-associated death domain, cleaved caspase-8/caspase-8, cleaved caspase-3/caspase-3, as well as Bax and Bcl-2, in the cerebral cortex and the hippocampus. Delayed exposure to EE, on the other hand, failed to inhibit the extrinsic pathway of apoptosis. This study demonstrates that very early exposure to EE is a potentially useful therapeutic translation for stroke rehabilitation through effective inhibition of the extrinsic and intrinsic apoptotic pathways.
Polydeoxyribonucleotide (PDRN) is an agonist that selectively stimulates adenosine A2A receptor (ADORA2A), which suppresses inflammatory responses. Ischemia/reperfusion (I/R) injury plays a major role in the pathogenesis of ischemic stroke by inducing neuroinflammation. Therefore, this study aimed to investigate the therapeutic effects of PDRN in an in vitro I/R injury model. The in vitro model was established with differentiated Neuro-2a cells under oxygen and glucose deprivation condition. The cells were treated with PDRN for 24 h under reoxygenation condition. As the results of RNA-seq transcriptome analysis, CSF1, IL-6, PTPN6, RAC2, and STAT1 were identified of its relation to the effect of PDRN on inflammatory responses in the model. To further investigate therapeutic effects of PDRN, RT-qPCR, western blotting, LDH assay, and TUNEL assay were performed. PDRN significantly reversed the expression of genes and proteins related to inflammatory responses. The elevated ADORA2A expression by PDRN treatment downregulated JAK/STAT pathway in the model. Furthermore, PDRN inhibited neuronal cell death in the model. Consequently, our results suggested that PDRN alleviated inflammatory responses through inhibition of JAK/STAT pathway by mediating ADORA2A expression and inhibited neuronal cell death in the model. These results provide significant insights into potential therapeutic approaches involving PDRN treatment for I/R injury.
Environmental enrichment (EE) is a promising therapeutic strategy in improving metabolic and neuronal responses, especially due to its non-invasive nature. However, the exact mechanism underlying the sex-differential effects remains unclear. The aim of the current study was to investigate the effects of EE on metabolism, body composition, and behavioral phenotype based on sex. Long-term exposure to EE for 8 weeks induced metabolic changes and fat reduction. In response to the change in metabolism, the level of βHB were influenced by sex and EE possibly in accordance to the phases of estrogen cycle. The expression of β-hydroxybutyrate (βHB)-related genes and proteins such as monocarboxylate transporters, histone deacetylases (HDAC), and brain-derived neurotrophic factor (BDNF) were significantly regulated. In cerebral cortex and hippocampus, EE resulted in a significant increase in the level of βHB and a significant reduction in HDAC, consequently enhancing BDNF expression. Moreover, EE exerted significant effects on motor and cognitive behaviors, indicating a significant functional improvement in female mice under the condition that asserts the influence of estrogen cycle. Using an ovariectomized mice model, the effects of EE and estrogen treatment proved the hypothesis that EE upregulates β-hydroxybutyrate and BDNF underlying functional improvement in female mice. The above findings demonstrate that long-term exposure to EE can possibly alter metabolism by increasing the level of βHB, regulate the expression of βHB-related proteins, and improve behavioral function as reflected by motor and cognitive presentation following the changes in estrogen level. This finding may lead to a marked improvement in metabolism and neuroplasticity by EE and estrogen level.
In this study, 16 children’s products with the highest detection potential of phthalates were selected, and a phthalate assay and transdermal delivery analysis (NIER, US EPA Wipe [stress condition], US EPA Wipe [physiological condition], and US EPA Hand Wipe) were conducted with these products. The content of 6 controlled phthalates (DBP, BBP, DEHP, DNOP, DINP, and DIDP) was measured and most products contained more phthalates than the regulated guidelines (a total content of 6 phthalates to be ≤0.1%). For transdermal delivery, all items were found to be lower in the NIER transdermal delivery test method compared to the US EPA Hand Wipe (stress condition and physiological condition) transdermal delivery test method. For the US EPA Hand Wipe (stress condition and physiological condition) transdermal delivery test method, a similar result was observed, except for DINP. The average daily dose (ADD) estimated by determining the exposure algorithm for each transdermal delivery test method was highest in mats with a large contacting surface area and a long exposure time in the respective test methods. Conclusively, there was a difference between the NIER transdermal delivery test method and the US EPA Wipe transdermal delivery test method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.