Sodium butyrate (NaBu) is used as a productivity enhancer for the production of therapeutic recombinant proteins in Chinese hamster ovary (CHO) cells. However, NaBu is well-known for having a cytotoxic effect, thereby inducing apoptosis. As an endeavor to reduce this defect, we studied 11 antioxidants known for inhibiting apoptosis, according to a Plackett-Burman statistical design on CHO cells producing recombinant interferon-beta-1a (IFN-beta). None of the antioxidants that we tested were as effective as N-acetylcystein (NAC) from the point of view of maintaining long-term survival of CHO cells and increasing the production of IFN-beta. In 7.5-L perfusion bioreactor cultures, the addition of NaBu and NAC elongated the culture period to almost 200 h throughout production phase and increased the production yield by 2-fold compared to control cultures containing only NaBu. Glycosylation patterns of produced IFN-beta at each run were also compared in IEF analysis. IEF profiles of where NaBu and NAC were added showed to be more isoforms with a lower pI than those of the control run. The sialic acid content was also increased by 17.7% according to HPLC analysis. Taken together, the data obtained demonstrate that the addition of NAC has positive effects on the elongation of the culture period, improving the production and increasing the sialylation of IFN-beta in NaBu-treated CHO cells.
Tooth development and regeneration occur through reciprocal interactions between epithelial and ectodermal mesenchymal stem cells. However, the current studies on tooth development are limited, since epithelial stem cells are relatively difficult to obtain and maintain. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be alternative options for epithelial cell sources. To differentiate hESCs/hiPSCs into dental epithelial-like stem cells, this study investigated the hypothesis that direct interactions between pluripotent stem cells, such as hESCs or hiPSCs, and Hertwig’s epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cell line may induce epithelial differentiation. Epithelial-like stem cells derived from hES (EPI-ES) and hiPSC (EPI-iPSC) had morphological and immunophenotypic characteristics of HERS/ERM cells, as well as similar gene expression. To overcome a rare population and insufficient expansion of primary cells, EPI-iPSC was immortalized with the SV40 large T antigen. The immortalized EPI-iPSC cell line had a normal karyotype, and a short tandem repeat (STR) analysis verified that it was derived from hiPSCs. The EPI-iPSC cell line co-cultured with dental pulp stem cells displayed increased amelogenic and odontogenic gene expression, exhibited higher dentin sialoprotein (DSPP) protein expression, and promoted mineralized nodule formation. These results indicated that the direct co-culture of hESCs/hiPSCs with HERS/ERM successfully established dental epithelial-like stem cells. Moreover, this differentiation protocol could help with understanding the functional roles of cell-to-cell communication and tissue engineering of teeth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.