License plate (LP) detection in the wild remains challenging due to the diversity of environmental conditions. Nevertheless, prior solutions have focused on controlled environments, such as when LP images frequently emerge as from an approximately frontal viewpoint and without scene text which might be mistaken for an LP. However, even for stateof-the-art object detectors, their detection performance is not satisfactory for real-world environments, suffering from various types of degradation. To solve these problems, we propose a novel end-to-end framework for robust LP detection, designed for such challenging settings. Our contribution is threefold: (1) A novel information-theoretic learning that takes advantage of a shared encoder, an LP detector and a scene text detector (excluding LP) simultaneously; (2) Localization refinement for generalizing the bounding box regression network to complement ambiguous detection results; (3) a large-scale, comprehensive dataset, LPST-110K, representing real-world unconstrained scenes including scene text annotations. Computational tests show that the proposed model outperforms other state-of-theart methods on a variety of challenging datasets.
Traffic scene recognition, which requires various visual classification tasks, is a critical ingredient in autonomous vehicles. However, most existing approaches treat each relevant task independently from one another, never considering the entire system as a whole. Because of this, they are limited to utilizing a task-specific set of features for all possible tasks of inference-time, which ignores the capability to leverage common task-invariant contextual knowledge for the task at hand. To address this problem, we propose an algorithm to jointly learn the task-specific and shared representations by adopting a multi-task learning network. Specifically, we present a lower bound for the mutual information constraint between shared feature embedding and input that is considered to be able to extract common contextual information across tasks while preserving essential information of each task jointly. The learned representations capture richer contextual information without additional task-specific network. Extensive experiments on the large-scale dataset HSD demonstrate the effectiveness and superiority of our network over state-of-the-art methods.
Visual perception in autonomous driving is a crucial part of a vehicle to navigate safely and sustainably in different traffic conditions. However, in bad weather such as heavy rain and haze, the performance of visual perception is greatly affected by several degrading effects. Recently, deep learning-based perception methods have addressed multiple degrading effects to reflect real-world bad weather cases but have shown limited success due to 1) high computational costs for deployment on mobile devices and 2) poor relevance between image enhancement and visual perception in terms of the model ability. To solve these issues, we propose a task-driven image enhancement network connected to the high-level vision task, which takes in an image corrupted by bad weather as input. Specifically, we introduce a novel low memory network to reduce most of the layer connections of dense blocks for less memory and computational cost while maintaining high performance. We also introduce a new task-driven training strategy to robustly guide the high-level task model suitable for both high-quality restoration of images and highly accurate perception. Experiment results demonstrate that the proposed method improves the performance among lane and 2D object detection, and depth estimation largely under adverse weather in terms of both low memory and accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.