This paper proposes an optimal methodology for automatically diagnosing and predicting the severity of the chronic kidney disease (CKD) using patients' utterances. In patients with CKD, the voice changes due to the weakening of respiratory and laryngeal muscles and vocal fold edema. Previous studies have phonetically analyzed the voices of patients with CKD, but no studies have been conducted to classify the voices of patients. In this paper, the utterances of patients with CKD were classified using the variety of utterance types (sustained vowel, sentence, general sentence), the feature sets [handcrafted features, extended Geneva Minimalistic Acoustic Parameter Set (eGeMAPS), CNN extracted features], and the classifiers (SVM, XGBoost). Total of 1,523 utterances which are 3 hours, 26 minutes, and 25 seconds long, are used. F1-score of 0.93 for automatically diagnosing a disease, 0.89 for a 3-classes problem, and 0.84 for a 5-classes problem were achieved. The highest performance was obtained when the combination of general sentence utterances, handcrafted feature set, and XGBoost was used. The result suggests that a general sentence utterance that can reflect all speakers' speech characteristics and an appropriate feature set extracted from there are adequate for the automatic classification of CKD patients' utterances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.