Mutations in leucine-rich repeat kinase 2 (LRRK2) are strongly associated with late-onset autosomal dominant Parkinson’s disease. We employed a novel, parallel, compound-centric approach to identify a potent and selective LRRK2 inhibitor LRRK2-IN-1, and demonstrated that inhibition of LRRK2 induces dephosphorylation of Ser910/Ser935 and accumulation of LRRK2 within aggregate structures. LRRK2-IN-1 will serve as a versatile tool to pharmacologically interrogate LRRK2 biology and study its role in Parkinson’s disease.
Mitogen-activated protein (MAP) kinases require dual phosphorylation on threonine and tyrosine residues in order to gain enzymatic activity. This activation is carried out by a family of enzymes known as MAP kinase kinases (MKKs or MEKs). It appears that there are at least four subgroups in this family; MEK1/MEK2 subgroup that activates ERK1/ERK2, MEK5 that activates ERK5/BMK1, MKK3 that activates p38, and MKK4 that activates p38 and Jun kinase. Here we describe the characteristics of a new MKK termed MKK6. The clones we isolated encode two splice isoforms of human MKK6 comprised of 278 and 334 amino acids, respectively, and one murine MKK6 with 237 amino acids. Sequence information derived from cDNA cloning indicated that MKK6 is most closely related to MKK3. The functional data revealed from co-transfection assays suggests that MKK6, like MKK3, selectively phosphorylates p38. Unlike the previously described MKKs (or MEKs), MKK6 exists in a variety of alternatively spliced isoforms with distinct patterns of tissue expression. This suggests novel mechanisms regulating activation and/or function of various forms of MKK6.
Summary
Protein kinases are intensely studied mediators of cellular signaling, yet important questions remain regarding their regulation and in vivo properties. Here we use a probe-based chemoprotemics platform to profile several well studied kinase inhibitors against more than 200 kinases in native cell proteomes and reveal new biological targets for some of these inhibitors. Several striking differences were identified between native and recombinant kinase inhibitory profiles, in particular, for the Raf kinases. The native kinase binding profiles presented here closely mirror the cellular activity of these inhibitors, even when the inhibition profiles differ dramatically from recombinant assay results. Additionally, Raf activation events could be detected upon live cell treatment with inhibitors. These studies highlight the complexities of protein kinase behavior in the cellular context and demonstrate that profiling with only recombinant/purified enzymes can be misleading.
SUMMARY
BMK1 is activated by mitogens and oncogenic signals and, thus, is strongly implicated in tumorigenesis. We found that BMK1 interacted with promyelocytic leukemia protein (PML), and inhibited its tumor-suppressor function through phosphorylation. Furthermore, activated BMK1 notably inhibited PML-dependent activation of p21. To further investigate the BMK-mediated inhibition of the tumor suppressor activity of PML in tumor cells, we developed a small-molecule inhibitor of the kinase activity of BMK1, XMD8-92. Inhibition of BMK1 by XMD8-92 blocked tumor cell proliferation in vitro and significantly inhibited tumor growth in vivo by 95%, demonstrating the efficacy and tolerability of BMK1-targeted cancer treatment in animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.