NaNbO(3) powders with various particle sizes (ranging from 30 nm to several microns) and well-controlled stoichiometry were obtained through microemulsion-mediated synthesis. The effect of particle size on the phase transformation of the prepared NaNbO(3) powders was studied using X-ray powder diffraction, Raman spectroscopy, and nuclear site group analysis based on these spectroscopic data. Coarsened particles exhibit an orthorhombic Pbcm (D(2h)(11), no. 57) structure corresponding to the bulk structure, as observed for single crystals or powders prepared by conventional solid-state reaction. The crystal symmetry of submicron powders was refined with the space group Pmc2(1) (C(2v)(2), no. 26). The reduced perovskite cell volumes of these submicron powders were most expanded compared to all the other structures. Fine particles with a diameter of less than 70 nm as measured from SEM observations showed an orthorhombic Pmma (D(2h)(5), no. 51) crystal symmetry. The perovskite formula cell of this structure was pseudocubic and was the most compact one. A possible mechanism of the phase transformation is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.