We present the design, manufacturing, and characterization of a novel miniaturized on-tube-seal configuration for microfluidic devices. The seal is based on a previously developed world-to-chip spring-based interface by Kortmann et al. (Lab Chip 9:1455-1460, 2009a, which enables rapid and reliable microfluidic connections. In this study, the dead volumes, the contact pressure, the discontinuous fluidic-profile transmission, and the space requirements were significantly optimized by a new on-tube-seal configuration. Maintaining the advantages of the previously described interface, the new on-tube-seal configuration has a dead volume of only 18 nl, withstands pressures higher than 2,800 kPa with only 3.8 N applied contact force, and allows continuous capillary to chip fluidic profile transmission. The on-tube-seal configuration consists of a miniaturized o-ring (0.5 9 0.3 mm) integrated into a 1/16 00 tubing that reduces space requirements to a minimal sealing grid of 1.59 mm and is easily adaptable to any planar channel opening of micro fluidic devices. In summary, we present a novel combination of gasket and tubing, which we termed on-tube-seal that allows simple, rapid, and reliable world-to-chip sealing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.