a b s t r a c tThis study proposes an effective numerical model based on the Computational Fluid Dynamics (CFD) approach to obtain the flow structure around a passenger car with wing type rear spoiler. The topology of the test vehicle and grid system is constructed by a commercial package, ICEM/CFD. FLUENT is the CFD solver employed in this study. After numerical iterations are completed, the aerodynamic data and detailed complicated flow structure are visualized using commercial packages, Field View and Tecplot. The wind effect on the aerodynamic behavior of a passenger car with and without a rear spoiler and endplate is numerically investigated in the present study. It is found that the installation of a spoiler with an appropriate angle of attack can reduce the aerodynamic lift coefficient. Furthermore, the installation of an endplate can reduce the noise behind the car. It is clear that the vertical stability of a passenger car and its noise elimination can be improved. Finally, the aerodynamics and aero-acoustics of the most suitable design of spoiler is introduced and analyzed.
The feasibility of using a lumped system approach in the heat transfer analysis of a layered porous cavity is numerically investigated in this paper. Two layered cavities are considered; in one case the sublayers are perpendicular to the imposed temperature gradient while in the other case they are parallel to the imposed temperature gradient. Numerical calculations have covered a wide range of parameters (i.e., 10⩽Ra1⩽1000,0.01⩽K1/K2⩽100, and L1/LH1/H=0.25, 0.5 and 0.75). The results are presented in term of the effective Rayleigh number which is defined based on the effective permeability. Two averaging techniques are used for the evaluation of the effective permeability; one is arithmetic average and the other is harmonic average. The results show that the lumped system approach can provide a fairly accurate prediction in heat transfer if the permeability is correctly characterized. Also found is that the effective permeability of a layered porous cavity is strongly dependent on the orientation of sublayers and the primary heat flow direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.