After one atmospheric pressure plasma treatment of poly(ethylene terephthalate) (PET) film, acrylic acid (AAc) in aqueous solution was successfully graft-copolymerized onto PET films. The effects of reaction time, AAc monomer concentration and reaction temperature on grafting behavior of AAc were systematically studied. Possible reaction kinetics of plasma-induced graft copolymerization, starting from initial hydroperoxide decomposition, were proposed. Through the Arrhenius analysis about graft copolymerization kinetics of AAc monomers on PET surface, it was revealed that the activation energies of decomposition, propagation and termination were 98.4, 63.5, and 17.5 kJ/mol, respectively. The temperature around 80 8C was favorable not only for the formation of oxide radicals through the thermal decomposition of hydroperoxide on PET surface but also for the extension of graft copolymer chain through direct polymer grafting. Poly(acrylic acid) (PAAc) grains grafted onto PET surfaces possessed relatively uniform size and both PAAc grain size and surface roughness increased with increasing the grafting degree of AAc. The increase of grain size with increasing grafting degree results from the possibility of forming long chain graft copolymers and their shielding of reactive sites.
A series of novel triazine-containing pore-tunable carbon materials (NT-POP@800-1-6), which was synthesized via pyrolysis of porous organic polymers (POPs) without any templates. NT-POP@800-1-6 possess moderate BET surface areas of 475–736 m2 g−1, have permanent porosity and plenty of nitrogen units in the skeletons as effective sorption sites, and display relatively rapid guest uptake of 56–192 wt% in iodine vapour in the first 4 h. In addition, all the samples exhibit the outstanding CO2 adsorption capacity of 2.83–3.96 mmol g−1 at 273 K and 1.05 bar. Furthermore, NT-POP@800-1-6 show good selectivity ratios of 21.2–36.9 and 3.3–7.5 for CO2/N2 or CH4/N2, respectively. We believe that our new building block design provides a general strategy for the construction of triazine-containing carbon materials from various extended building blocks, thereby greatly expanding the range of applicable molecules.
We herein report the construction of four the novel fluorine-enriched conjugated microporous polymers (FCMP-600@1-4), which have permanent porous structures and plenty of fluorine atoms in the skeletons as effective sorption sites. Among them, FCMP-600@4 shows considerable adsorption capacity of CO2 of 5.35 mmol g−1 at 273 K, and 4.18 mmol g−1 at 298 K, which is higher than the reported values for most porous polymers. In addition, FCMP-600@1-4 display high selectivity of CO2/N2 and high CH4 uptakes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.