Background: To investigate the expression, function, and related mechanisms of circHIPK3 in oral squamous cell carcinoma (OSCC). Methods: CircHIPK3 expression was determined by quantitative reverse transcription polymerized chain reaction (QRT-PCR) in OSCC and adjacent tissues, and the correlation between the circHIPK3 level and clinicopathological indexes of OSCC was analyzed. CircHIPK3 expressions in different OSCC cell lines were detected, cell counting kit-8 (CCK-8) and 5-bromodeoxyuridine (BrdU) assays were utilized to monitor cell proliferation and activity. Flow cytometry was adopted to detect apoptosis and transwell assay was used to detect cell invasion. The expressions of nuclear protein 1 (NUPR1), phosphatidylinositol 3 kinase (PI3K)/ protein kinase B (AKT) (PI3K/AKT) pathway proteins, and E-cadherin, Vimentin, and N-cadherin markers of epithelial-mesenchymal transformation (EMT) were detected by Western blot or Quantitative Real-time PCR (QRT-PCR).Results: Upregulated circHIPK3 was noted in OSCC tissues (compared with adjacent tissues), and its overexpression was related to OSCC size and histopathological grade. Functionally, overexpressed circHIPK3 can significantly promote EMT, proliferation, and invasion of OSCC cells and can inhibit cell apoptosis in vivo and in vitro. In addition, CircHIPK3 upregulated the activation of NUPR1 and PI3K/AKT. Bioinformatics analyses showed that miR-637 was the common target of circHIPK3 and NUPR1, while a dual luciferase reporting assay and RIP assay further demonstrated that circHIPK3 targeted miR-637 and bound to 3' UTR of NUPR1.Conclusions: CircHIPK3 demonstrates potential as a prognostic marker of OSCC and mediates OSCC progression via the miR-637-mediated NUPR1/PI3K/AKT axis.
Global-local self-shielding calculation scheme is a new high-fidelity resonance calculation model proposed by NECP laboratory of Xi'an Jiaotong University. Neutron Current Method (NCM) is utilized for resonance calculation in the global aspect to obtain Dancoff factors. Then each fuel pin is transformed into individual 1D cylindrical problems by conserving Dancoff factors. The Pseudo-Resonant-Nuclide Subgroup Method (PRNSM) is used to conduct resonance calculation in the local aspect for each 1D cylindrical pin. Global-local self-shielding calculation scheme has been successfully implemented in high-fidelity numerical nuclear reactor physics code NECP-X. Verification results of global-local self-shielding calculation scheme showed good accuracy for UO2 fuels. The maximum relative error of microscopic absorption cross sections (XSs) for 238U in resonance range was 1.5% compared with MCNP5 [1]. AIC control rods serve as strong absorbers in reactor. Strong self-shielding phenomenon occurs when AIC control rods are inserted. Analysis was performed to determine the effects of AIC control rods on the accuracy of global-local self-shielding calculation scheme and the sources of error. Evaluation results showed that the main part of error was introduced by NCM and radius searching. The relative errors were larger than 10% in several resonance groups. Therefore, a supercell model is proposed to couple with global-local self-shielding calculation scheme to treat resonance calculation for AIC control rods in this paper. Numerical results show that this model improves the accuracy of the global-local self-shielding calculation scheme. The relative errors of microscopic absorption XSs for AIC in most resonance groups were decreased to less than 2%.
An improved supercell scheme has been proposed in this paper to efficiently and accurately process resonance self-shielding effect of gadolinia. Resonance effects are classified into global shadowing effect and local effects involving resonance interference, spatial self-shielding effects. Two categories of effects are decoupled and treated respectively based on different 1-D cylindrical pins. Hyperfine group method is applied to obtain multi-group cross sections for each 1-D pin. Afterwards, two categories of effects are coupled based on a correction formula. Because of the low efficiency for Carlvik method to compute collision probabilities in hyperfine group method, online tabulation and interpolation method is developed to accelerate gaining collision probabilities. The proposed scheme is verified against the problems of 3×3 pins with gadolinia rod, VERA 2O assembly with 12 gadolinia rods and VERA 2P with 24 gadolinia rods. The numerical results suggest promising consistence of multi-group cross sections and eigenvalues between the proposed scheme and reference solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.