During the pathogenesis of human hepatocellular carcinoma (HCC), the CpG island encompassing the -class glutathione S-transferase gene (GSTP1) becomes hypermethylated. Repression of transcription accompanying CpG island hypermethylation has been proposed to be mediated by methyl-CpG binding domain (MBD) proteins. We report here that inhibition of transcription from hypermethylated GSTP1 promoters in Hep3B HCC cells, which fail to express GSTP1 mRNA or GSTP1 polypeptides, appears to be mediated by MBD2. Treatment of Hep3B cells with 5-azadeoxycytidine (5-aza-dC), a methyltransferase inhibitor, activated GSTP1 expression, whereas treatment with trichostatin A, a histone deacetylase inhibitor, had little effect. To more precisely assess the contribution of the pattern of GSTP1 CpG island methylation on GSTP1 mRNA expression, Hep3B cells were treated for 72 h with 5-aza-dC and then subjected to limiting dilution cloning. Bisulfite sequencing was used to map the methylation patterns of the GSTP1 promoter region in GSTP1-expressing and -non-expressing clones. In the clone that expressed GSTP1 mRNA determined by Northern blot analysis and quantitative reverse transcriptase (RT)-PCR, widespread demethylation of at least one GSTP1 allele was evident. Chromatin immunoprecipitation experiments revealed the presence of MBD2, but not Sp1, at the GSTP1 promoter in Hep3B cells. In contrast, Sp1 was detected at the GSTP1 promoter in a GSTP1-expressing Hep3B 5-aza-dC subclone. To test whether MBD2 might be responsible for the inhibition of GSTP1 transcription from hypermethylated GSTP1 promoters, siRNAs were used to reduce MBD2 polypeptide levels in Hep3B cells. SssI-catalyzed methylation of GSTP1 promoter sequences resulted in diminished luciferase reporter activity after transfection into Hep3B cells. However, when hypermethylated GSTP1 promoter sequences were transfected into Hep3B cells that had been treated with siRNA-targeting MBD2 mRNA, no repression of luciferase reporter expression was evident. These findings implicate MBD2 in the repression of GSTP1 expression associated with GSTP1 CpG island hypermethylation in HCC cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.