Link prediction and recommendation is a fundamental problem in social network analysis. The key challenge of link prediction comes from the sparsity of networks due to the strong disproportion of links that they have potential to form to links that do form. Most previous work tries to solve the problem in single network, few research focus on capturing the general principles of link formation across heterogeneous networks.In this work, we give a formal definition of link recommendation across heterogeneous networks. Then we propose a ranking factor graph model (RFG) for predicting links in social networks, which effectively improves the predictive performance. Motivated by the intuition that people make friends in different networks with similar principles, we find several social patterns that are general across heterogeneous networks. With the general social patterns, we develop a transfer-based RFG model that combines them with network structure information. This model provides us insight into fundamental principles that drive the link formation and network evolution. Finally, we verify the predictive performance of the presented transfer model on 12 pairs of transfer cases. Our experimental results demonstrate that the transfer of general social patterns indeed help the prediction of links.
Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or
context logs
for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users.
In conventional speech synthesis, large amounts of phonetically balanced speech data recorded in highly controlled recording studio environments are typically required to build a voice. Although using such data is a straightforward solution for high quality synthesis, the number of voices available will always be limited, because recording costs are high. On the other hand, our recent experiments with HMM-based speech synthesis systems have demonstrated that speaker-adaptive HMM-based speech synthesis (which uses an "average voice model" plus model adaptation) is robust to non-ideal speech data that are recorded under various conditions and with varying microphones, that are not perfectly clean, and/or that lack phonetic balance. This enables us to consider building high-quality voices on "non-TTS" corpora such as ASR corpora. Since ASR corpora generally include a large number of speakers, this leads to the possibility of producing an enormous number of voices automatically. In this paper, we demonstrate the thousands of voices for HMM-based speech synthesis that we have made from several popular ASR corpora such as the Wall Street Journal (WSJ0, WSJ1, and WSJCAM0), Resource Management, Globalphone, and SPEECON databases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.