Schizophrenia is a disorder characterized by functional dysconnectivity among distributed brain regions. However, it is unclear how causal influences among large-scale brain networks are disrupted in schizophrenia. In this study, we used dynamic causal modeling (DCM) to assess the hypothesis that there is aberrant directed (effective) connectivity within and between three key large-scale brain networks (the dorsal attention network, the salience network and the default mode network) in schizophrenia during a working memory task. Functional MRI data during an n-back task from 40 patients with schizophrenia and 62 healthy controls were analyzed. Using hierarchical modeling of between-subject effects in DCM with Parametric Empirical Bayes, we found that intrinsic (within-region) and extrinsic (between-region) effective connectivity involving prefrontal regions were abnormal in schizophrenia. Specifically, in patients (i) inhibitory self-connections in prefrontal regions of the dorsal attention network were decreased across task conditions; (ii) extrinsic connectivity between regions of the default mode network was increased; specifically, from posterior cingulate cortex to the medial prefrontal cortex; (iii) between-network extrinsic connections involving the prefrontal cortex were altered; (iv) connections within networks and between networks were correlated with the severity of clinical symptoms and impaired cognition beyond working memory. In short, this study revealed the predominance of reduced synaptic efficacy of prefrontal efferents and afferents in the pathophysiology of schizophrenia.
Background:Dysconnectivity hypothesis of schizophrenia has been increasingly emphasized. Recent researches showed that this dysconnectivity might be related to occurrence of auditory hallucination (AH). However, there is still no consistent conclusion. This study aimed to explore intrinsic dysconnectivity pattern of whole-brain functional networks at voxel level in schizophrenic with AH.Methods:Auditory hallucinated patients group (n = 42 APG), no hallucinated patients group (n = 42 NPG) and normal controls (n = 84 NCs) were analyzed by resting-state functional magnetic resonance imaging. The functional connectivity metrics index (degree centrality [DC]) across the entire brain networks was calculated and evaluated among three groups.Results:DC decreased in the bilateral putamen and increased in the left superior frontal gyrus in all the patients. However, in APG, the changes of DC were more obvious compared with NPG. Symptomology scores were negatively correlated with the DC of bilateral putamen in all patients. AH score of APG positively correlated with the DC in left superior frontal gyrus but negatively correlated with the DC in bilateral putamen.Conclusion:Our findings corroborated that schizophrenia was characterized by functional dysconnectivity, and the abnormal DC in bilateral putamen and left superior frontal gyrus might be crucial in the occurrence of AH.
Ubiquitin-specific peptidase 4 (USP4) protein is a type of deubiquitination enzyme that is correlated with many important biological processes. However, the function of USP4 in hepatic ischaemia/reperfusion (I/R) injury remains unknown. The aim of the present study was to explore the role of USP4 in hepatic I/R injury. USP4 gene knockout mice and primary hepatocytes were used to construct hepatic I/R models. The effect of USP4 on hepatic I/R injury was examined via pathological and molecular analyses. Our results indicated that USP4 was significantly up-regulated in liver of mice subjected to hepatic I/R injury. USP4 knockout mice exhibited exacerbated hepatic I/R injury, as evidenced by enhanced liver inflammation via the nuclear factor κB (NF-κB) signalling pathway and increased hepatocyte apoptosis. Additionally, USP4 overexpression inhibited hepatocyte inflammation and apoptosis on hepatic I/R stimulation. Mechanistically, our study demonstrates that USP4 deficiency exerts its detrimental effects on hepatic I/R injury by inducing activation of the transforming growth factor β-activated kinase 1 (TAK1)/JNK signalling pathways. TAK1 was required for USP4 function in hepatic I/R injury as TAK1 inhibition abolished USP4 function in vitro. In conclusion, our study demonstrates that USP4 deficiency plays a detrimental role in hepatic I/R injury by promoting activation of the TAK1/JNK signalling pathways. Modulation of this axis may be a novel strategy to alleviate the pathological process of hepatic I/R injury.
Tripartite motif (Trim) 8 is an E3 ubiquitin ligase, interacting with and ubiquitinating diverse substrates, and is closely involved in innate immunity. However, the function of Trim8 in hepatic ischaemia/reperfusion (I/R) injury remains largely unknown. The aim of this study is to explore the role of Trim8 in hepatic I/R injury. Trim8 gene knockout mice and primary hepatocytes were used to construct hepatic I/R models. The effect of Trim8 on hepatic I/R injury was analysed via pathological and molecular analyses. The results indicated that Trim8 was significantly upregulated in liver of mice subjected to hepatic I/R injury. Trim8 knockout relieved hepatocyte injury triggered by I/R. Silencing of Trim8 expression alleviated hepatic inflammation responses and inhibited apoptosis in vitro and in vivo. Mechanistically, our study suggests that Trim8 deficiency may elicit hepatic protective effects by inhibiting the activation of transforming growth factor β-activated kinase 1 (TAK1)-p38/JNK signalling pathways. TAK1 was required for Trim8 function in hepatic I/R injury as TAK1 activation abolished Trim8 function in vitro. In conclusion, our study demonstrates that Trim8 deficiency plays a protective role in hepatic I/R injury by inhibiting the activation of TAK1-dependent signalling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.