Background To evaluate the correlations between lipid layer thickness (LLT) and morphology and function of the meibomian glands in patients who were diagnosed as meibomian gland dysfunction (MGD) in different age groups. Methods Patients who have diagnosed as obstructive MGD were included in this prospective, cross-sectional study. Patients were divided into three groups: young (ages 20–39 years), middle-aged (ages 40–59 years), and older (aged ≥60 years). All patients completed an Ocular Surface Disease Index (OSDI) questionnaire and were evaluated for LLT, tear meniscus height (TMH), noninvasive tear film break-up time (NI-BUT) measurement, invasive TBUT (ITBUT), corneal fluoresceinstaining (CFS) score, eyelid margin abnormalities, Schirmer I test, and MG function and morphology, by using the Keratograph 5 and LipiView interferometer. Results Two hundred and nine patients (209 eyes) were included. The median LLT of all patient was 57 nm (IQR, 36.5 nm), and the LLT values were significantly different among the young group (median, 51 nm; IQR, 23.5 nm), middle-aged group (median, 59.5 nm; IQR 46.5 nm) and older group (median, 62 nm; IQR, 42.5 nm) (P = 0.033, Kruskal-Wallis test). In regression analyses controlling for confounder factors sex and MG loss, the LLT was positively correlated with age (β = 5.539, P = 0.001). There was a negative correlation between LLT and MG dropout in the all (r = − 0.527, P < 0.001), young (r = − 0.536, P < 0.001), middle-aged (r = − 0.576, P < 0.001), and older (r = − 0.501, P < 0.001) groups. LLT was positively correlated with the MG expressibility in the all (r = 0.202, P = 0.003), middle-aged (r = 0.280, P = 0.044) and older (r = 0.452, p < 0.001) groups, but it was no statistical significance in the young group (r = 0.007, P = 0.949). Conclusions The thickness of LLT was increased with age and significantly correlated with both MG secretion and morphology in middle-aged and older patients with obstructive MGD. LLT measurement is a useful screening tool for detecting obstructive MGD and age as an influential factor should be accounted for when interpreting the meaning of the LLT value. Trial registration NCT02481167; Registered 25 June, 2015.
Purpose. To investigate the safety and efficacy of monocular treatment for elderly Chinese patients with meibomian gland dysfunction (MGD) with an automated thermodynamic system. Methods. This study was a prospective, examiner-masked, contralateral eye clinical trial. The eye perceived by the patient to be worse (test eye) received a 12-minute LipiFlow treatment, while the other eye served as control. All patients were examined before treatment and one week, one month, and three months after treatment. Clinical parameters included dry eye symptoms, lipid layer thickness (LLT), partial blink (PB) ratio, invasive tear breakup time (ITBUT) and cornea staining, Schirmer I test, meibomian glands yielding liquid secretion (MGYLS), and meibomian gland dropout. Results. A total of 29 patients were examined during the three-month follow-up. At each posttreatment visit, they had a significant reduction in dry eye symptoms accompanied by an increase of ITBUT and MGYLS and a reduction in corneal staining compared with the baseline parameters. There was a significant improvement in MGYLS and ITBUT in the test eye compared with the control eye. Other clinical parameters were not statistically significant. Conclusion. LipiFlow is an effective treatment for patients with MGD. Monocular treatment with LipiFlow may be a cost-effective treatment option to those afflicted with MGD in the developing world.
Soft rot causes significant economic losses in the kiwifruit industry. This study isolated strain CTXW 7-6-2 from healthy kiwifruit tissue; this was a gram-positive bacterium that produced the red pigment pulcherrimin. The phylogenetic tree based on 16S ribosomal RNA, gyrA, rpoB, and purH gene sequences identified CTXW 7-6-2 as a strain of Bacillus subtilis. CTXW 7-6-2 inhibited hyphal growth of pathogenic fungi that cause kiwifruit soft rot, namely, Botryosphaeria dothidea, Phomopsis sp., and Alternaria alternata, by 81.76, 69.80, and 32.03%, respectively. CTXW 7-6-2 caused the hyphal surface to become swollen and deformed. Volatile compounds (VOC) produced by the strain inhibited the growth of A. alternata and Phomopsis sp. by 65.74 and 54.78%, respectively. Whole-genome sequencing revealed that CTXW 7-6-2 possessed a single circular chromosome of 4,221,676 bp that contained 4,428 protein-coding genes, with a guanine and cytosine (GC) content of 43.41%. Gene functions were annotated using the National Center for Biotechnology Information (NCBI) non-redundant protein, Swiss-Prot, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups of proteins, Gene Ontology, Pathogen–Host Interactions, Carbohydrate-Active enZYmes, and Rapid Annotations using Subsystem Technology databases, revealing non-ribosomal pathways associated with antifungal mechanisms, biofilm formation, chemotactic motility, VOC 3-hydroxy-2-butanone, cell wall-associated enzymes, and synthesis of various secondary metabolites. antiSMASH analysis predicted that CTXW 7-6-2 can produce the active substances bacillaene, bacillibactin, subtilosin A, bacilysin, and luminmide and has four gene clusters of unknown function. Quantitative real-time PCR (qRT-PCR) analysis verified that yvmC and cypX, key genes involved in the production of pulcherrimin, were highly expressed in CTXW 7-6-2. This study elucidates the mechanism by which B. subtilis strain CTXW 7-6-2 inhibits pathogenic fungi that cause kiwifruit soft rot, suggesting the benefit of further studying its antifungal active substances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.