Influenza A viruses occur worldwide in wild birds and are occasionally associated with outbreaks in commercial chickens and turkeys. However, avian influenza viruses have not been isolated from wild birds or poultry in South America. A recent outbreak in chickens of H7N3 low pathogenic avian influenza (LPAI) occurred in Chile. One month later, after a sudden increase in deaths, H7N3 highly pathogenic avian influenza (HPAI) virus was isolated. Sequence analysis of all eight genes of the LPAI virus and the HPAI viruses showed minor differences between the viruses except at the hemagglutinin (HA) cleavage site. The LPAI virus had a cleavage site similar to other low pathogenic H7 viruses, but the HPAI isolates had a 30 nucleotide insert. The insertion likely occurred by recombination between the HA and nucleoprotein genes of the LPAI virus, resulting in a virulence shift. Sequence comparison of all eight gene segments showed the Chilean viruses were also distinct from all other avian influenza viruses and represent a distinct South American clade.
Outbreaks of avian influenza due to an H7N1 virus of low pathogenicity occurred in domestic poultry in northern Italy from March 1999 until December 1999 when a highly pathogenic avian influenza (HPAI) virus emerged. Nucleotide sequences were determined for the HA1 and the stalk region of the neuraminidase (NA) for viruses from the outbreaks. The HPAI viruses have an unusual multibasic haemagglutinin (HA) cleavage site motif, PEIPKGSRVRRGLF. Phylogenetic analysis showed that the HPAI viruses arose from low pathogenicity viruses and that they are most closely related to a wild bird isolate, A/teal/Taiwan/98. Additional glycosylation sites were present at amino acid position 149 of the HA for two separate lineages, and at position 123 for all HPAI and some low pathogenicity viruses. Other viruses had no additional glycosylation sites. All viruses examined from the Italian outbreaks had a 22 amino acid deletion in the NA stalk that is not present in the N1 genes of the wild bird viruses examined. We conclude that the Italian HPAI viruses arose from low pathogenicity strains, and that a deletion in the NA stalk followed by the acquisition of additional glycosylation near the receptor binding site of HA1 may be an adaptation of H7 viruses to a new host species i.e. domestic poultry.
The declaration of the human influenza A pandemic (H1N1) 2009 (H1N1/09) raised important questions, including origin and host range [1], [2]. Two of the three pandemics in the last century resulted in the spread of virus to pigs (H1N1, 1918; H3N2, 1968) with subsequent independent establishment and evolution within swine worldwide [3]. A key public and veterinary health consideration in the context of the evolving pandemic is whether the H1N1/09 virus could become established in pig populations [4]. We performed an infection and transmission study in pigs with A/California/07/09. In combination, clinical, pathological, modified influenza A matrix gene real time RT-PCR and viral genomic analyses have shown that infection results in the induction of clinical signs, viral pathogenesis restricted to the respiratory tract, infection dynamics consistent with endemic strains of influenza A in pigs, virus transmissibility between pigs and virus-host adaptation events. Our results demonstrate that extant H1N1/09 is fully capable of becoming established in global pig populations. We also show the roles of viral receptor specificity in both transmission and tissue tropism. Remarkably, following direct inoculation of pigs with virus quasispecies differing by amino acid substitutions in the haemagglutinin receptor-binding site, only virus with aspartic acid at position 225 (225D) was detected in nasal secretions of contact infected pigs. In contrast, in lower respiratory tract samples from directly inoculated pigs, with clearly demonstrable pulmonary pathology, there was apparent selection of a virus variant with glycine (225G). These findings provide potential clues to the existence and biological significance of viral receptor-binding variants with 225D and 225G during the 1918 pandemic [5].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.