Posterior fossa ependymomas (EPN_PF) in children comprise two morphologically identical, but biologically distinct tumor entities. Group-A (EPN_PFA) tumors have a poor prognosis and require intensive therapy. In contrast, group-B tumors (EPN_PFB) exhibit excellent prognosis and the current consensus opinion recommends future clinical trials to test the possibility of treatment de-escalation in these patients. Therefore distinguishing these two tumor subtypes is critical. EPN_PFA and EPN_PFB can be distinguished based on DNA methylation signatures, but these assays are not routinely available. We have previously shown that a subset of poorly prognostic childhood EPN_PF exhibits global reduction in H3K27me3. Therefore, we set out to determine whether a simple immunohistochemical assay for H3K27me3 could be used to segregate EPN_PFA from EPN_PFB tumors. We assembled a cohort of 230 childhood ependymomas and H3K27me3 immunohistochemistry was assessed as positive or negative in a blinded manner. H3K27me3 staining results were compared with DNA methylation-based subgroup information available in 112 samples [EPN_PFA (n=72) and EPN_PFB tumors (n=40)]. H3K27me3 staining was globally reduced in EPN_PFA tumors and immunohistochemistry showed 99% sensitivity and 100% specificity in segregating EPN_PFA from EPN_PFB tumors. Moreover, H3K27me3 immunostaining was sufficient to delineate patients with worse prognosis in two independent, non-overlapping cohorts (n=133 and n=97). In conclusion, immunohistochemical evaluation of H3K27me3 global reduction is an economic, easily available and readily adaptable method for defining high-risk EPN_PFA from low-risk posterior fossa EPN_PFB tumors to inform prognosis and to enable the design of future clinical trials.
Childhood posterior fossa (PF) ependymomas cause substantial morbidity and mortality. These tumors lack recurrent genetic mutations but a subset of these ependymomas exhibit CpG-island (CpGi) hypermethylation (PF group A; PFA), implicating epigenetic alterations in their pathogenesis. Further, histological grade does not reliably predict prognosis, highlighting the importance of developing more robust prognostic markers. We discovered global H3K27me3 reduction in a subset of these tumors (PF−ve ependymomas) analogous to H3K27M mutant gliomas. PF−ve tumors exhibited many clinical and biological similarities with PFA ependymomas. Genomic H3K27me3 distribution showed an inverse relationship with CpGi methylation, suggesting that CpGi hypermethylation drives low H3K27me3 in PF−ve ependymomas. Despite CpGi hypermethylation and global H3K27me3 reduction, these tumors showed DNA hypomethylation in the rest of the genome and exhibited increased H3K27me3 genomic enrichment at limited genomic loci similar to H3K27M mutant gliomas. Combined integrative analysis of PF−ve ependymomas with H3K27M gliomas uncovered common epigenetic deregulation of select factors that control radial glial biology, and PF radial glia in early human development exhibited reduced H3K27me3. Finally, H3K27me3 immunostaining served as a biomarker of poor prognosis and delineated radiologically invasive tumors, suggesting that reduced H3K27me3 may be a prognostic indicator in PF ependymomas.
Purpose: In breast cancer, the presence of estrogen receptor a (ER) denotes a better prognosis and response to antiestrogen therapy. Lack of ERa correlates with overexpression of epidermal growth factor receptor or c-erbB-2. We have shown that hyperactivation of mitogen-activated protein kinase (MAPK)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.