The Raf/MEK/ERK, Wnt/beta-catenin, JAK/STAT and PI3K/Akt signal transduction pathways have key roles in regulation of cell cycle progression and apoptosis, and are current focal points of therapeutic development and intervention strategies for hematopoietic neoplasias. Although mutations in several pathway-associated genes known to contribute to the malignant phenotype have been described, the mutation status of genes encoding components of these pathways as a whole remains to be determined. This has yet to be achieved in even a single type of cancer. In this study, we applied a novel mutation scanning strategy (HTMS) that utilizes SURVEYOR Endouclease heteroduplex cleavage analysis of patient derived PCR products, along with selective fluorescent DNA sequencing in a combinatorial fashion to achieve high-throughput, accuracy, and sensitivity. Comprehensive screening of the protein coding portions of 33 signal transduction pathway genes was performed on PCR products from 192 AML samples and 48 controls. Target genes included receptor kinases (FLT3, KIT, CSF1R, FGFR3, NOTCH1), cytoplasmic kinases (ABL1, SRC, PIK3CA, JAK2), GTPases (KRAS, NRAS, HRAS), transcription factors (MYC, GATA1, CEBPA) and tumor suppressors (PTEN, P53). The Raf/MEK/ERK (genes: BRAF, ARAF, CRAF, PTPN11, MEK1/2, ERK1/2) and Wnt/beta-catenin (genes: APC, CTNNB1, CDH1, AXIN1, AXIN2, GSK3B, PP2A) pathways were emphasized. Using this high-throughput mutation scanning (HTMS) methodology, over 10 million base pairs from 192 cancer genomes and 48 control genomes was analyzed for somatic alterations and inherited polymorphisms in these genes. In the AML sample set, we identified 393 somatic mutations (2.0 mutations/AML), of which 54 (13.7%) have not been previously reported. These novel variants included point mutations in key functional domains of FLT3, KIT, NRAS, BRAF, ARAF, PTPN11, ABL1, FGFR3, MYC, NOTCH1, APC, CTNNB1, and GSK3B. At least one mutation was found in 100% of the AML samples. The relevance of these somatic mutations to the AML pathogenesis awaits detailed functional studies. The approach demonstrated in this study represents an effective in-depth mining strategy for high-throughput mutation analysis, compared to the standard re-sequencing approach for profiling of complex genetic diseases like cancer. The HTMS approach alleviates the current bottleneck of rigorous, manual sequence analysis that is required to identify somatic mutations. By integrating mutational profiling with comparative genomic hybridization, high-density SNP screening, and RNA profiling, many genetic changes relevant to cancer diagnosis, treatment and patient management, will surely be discovered, along with new targets for therapeutic intervention.
The Raf/MEK/ERK, Wnt/beta-catenin, JAK/STAT and PI3K/Akt signal transduction pathways have key roles in the regulation of cell cycle progression and apoptosis, and are current focal points of therapeutic development and intervention strategies for hematopoietic neoplasias. These pathways have several regulatory components that keep proliferative and anti-apoptotic mechanisms in check, but which can also drive neoplastic processes when their functions are altered by genetic and epigenetic events. Links between critical pathways are also being established and, although only partially understood, may provide important clues for the development of more efficacious therapies that target multiple pathways. Although mutations in several pathway-associated genes known to contribute to the malignant phenotype have been discovered, the mutation status of the pathway as a whole in a particular blood cancer type remains to be determined. In this study, we applied novel mutation detection technologies (DHPLC, Surveyor Nuclease, and fluorescent DNA sequencing) in a combinatorial fashion to achieve high throughput, accuracy, and sensitivity for a comprehensive screening of signal transduction pathway genes. Key targets for the analysis included genes encoding receptor tyrosine kinases, cytoplasmic kinases, GTPases, transcription factors and tumor suppressors, with emphasis on Raf/MEK/ERK and PI3K/AKT pathways. We present both somatic alterations and inherited polymorphisms (SNPs) in these genes from the analyses of AML and CML sample sets. Functional analyses will confirm the causative nature of these genetic variants and their contributions to tumorigenesis. Other groups have focused on gene families for analysis of somatic mutations in tumors, such as kinases and phosphatases. This study takes a signaling pathway approach to group gene targets for analysis. We believe that pathway-based mutation analysis strategies offer significant potential to enhance understanding of cancer initiation, disease progression, response to therapy, and mechanisms of drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.