We describe a novel role for the ARF6 GTPase in the regulation of adherens junction (AJ) turnover in MDCK epithelial cells. Expression of a GTPase‐defective ARF6 mutant, ARF6(Q67L), led to a loss of AJs and ruffling of the lateral plasma membrane via mechanisms that were mutually exclusive. ARF6‐GTP‐induced AJ disassembly did not require actin remodeling, but was dependent on the internalization of E‐cadherin into the cytoplasm via vesicle transport. ARF6 activation was accompanied by increased migratory potential, and treatment of cells with hepatocyte growth factor (HGF) induced the activation of endogenous ARF6. The effect of ARF6(Q67L) on AJs was specific since ARF6 activation did not perturb tight junction assembly or cell polarity. In contrast, dominant‐negative ARF6, ARF6(T27N), localized to AJs and its expression blocked cell migration and HGF‐induced internalization of cadherin‐based junctional components into the cytoplasm. Finally, we show that ARF6 exerts its role downstream of v‐Src activation during the disassembly of AJs. These findings document an essential role for ARF6‐ regulated membrane traffic in AJ disassembly and epithelial cell migration.
ARF6-regulated endocytosis of E-cadherin is essential during the disassembly of adherens junctions in epithelial cells. Here, we show that activation of ARF6 promotes clathrin-dependent internalization of E-cadherin and caveolae at the basolateral cell surface. Furthermore, we demonstrate that ARF6-GTP, a constitutively activate form of ARF6, interacts with and recruits Nm23-H1, a nucleoside diphosphate (NDP) kinase that provides a source of GTP for dynamin-dependent fission of coated vesicles during endocytosis. Finally, we show that ARF6-mediated recruitment of Nm-23-H1 to cell junctions is accompanied by a decrease in the cellular levels of Rac1-GTP, consistent with previous findings that Nm23-H1 down-regulates activation of Rac1. These studies provide a molecular basis for ARF6 function in polarized epithelia during adherens junction disassembly.
Recent work has underscored the importance of membrane trafficking events during cytokinesis. For example, targeted membrane secretion occurs at the cleavage furrow in animal cells, and proteins that regulate endocytosis also influence the process of cytokinesis. Nonetheless, the prevailing dogma is that endosomal membrane trafficking ceases during mitosis and resumes after cell division is complete. In this study, we have characterized endocytic membrane trafficking events that occur during mammalian cell cytokinesis. We have found that, although endocytosis ceases during the early stages of mitosis, it resumes during late mitosis in a temporally and spatially regulated pattern as cells progress from anaphase to cytokinesis. Using fixed and live cell imaging, we have found that, during cleavage furrow ingression, vesicles are internalized from the polar region and subsequently trafficked to the midbody area during later stages of cytokinesis. In addition, we have demonstrated that cytokinesis is inhibited when clathrin-mediated endocytosis is blocked using a series of dominant negative mutants. In contrast to previous thought, we conclude that endocytosis resumes during the later stages of mitosis, before cytokinesis is completed. Furthermore, based on our findings, we propose that the proper regulation of endosomal membrane traffic is necessary for the successful completion of cytokinesis.
To understand the causes of CAG repeat tract changes that occur in the passage of human disease alleles, we are studying the effect of replication and repair mutations on CAG repeat tracts embedded in a yeast chromosome. In this report, we examine the effect of a mutation in the RTH1/RAD27 gene encoding a deoxyribonuclease needed for removal of excess nucleotides at the 5'-end of Okazaki fragments. Deletion of the RTH1/RAD27 gene has two effects on CAG tracts. First, the rth1/rad27 mutation destabilizes CAG tracts. Second, although most tract length changes in wild-type yeast cells are tract contractions, approximately half of the changes that occur as a result of the rth1/rad27 mutation are expansions of one or more repeat units. These results support the hypothesis that tract expansions that occur during passage of human disease alleles bearing expanded CAG tracts result from excess DNA synthesis on the lagging strand of replication.
A wide range of cellular activities depends upon endocytic recycling. ARF6, a small molecular weight GTPase, regulates the processes of endocytosis and endocytic recycling in concert with various effector molecules and other small GTPases. This review highlights three critical processes that involve ARF6-mediated endosomal membrane trafficking—cell motility, cytokinesis, and cholesterol homeostasis. In each case, the function of ARF6-mediated trafficking varies—including localization of specific protein and lipid cargo, regulation of bulk membrane movement, and modulation of intracellular signaling. As described in this review, mis-regulation of endocytic traffic can result in human disease when it compromises the cell’s ability to regulate cell movement and invasion, cell division, and lipid homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.