The zebrafish (Danio rerio) has emerged as an ideal organism for the study of hematopoiesis, the process by which all the cellular elements of the blood are formed. These elements, including erythrocytes, granulocytes, monocytes, lymphocytes, and thrombocytes, are formed through complex genetic signaling pathways that are highly conserved throughout phylogeny. Large-scale forward genetic screens have identified numerous blood mutants in zebrafish, helping to elucidate specific signaling pathways important for hematopoietic stem cells (HSCs) and the various committed blood cell lineages. Here we review both primitive and definitive hematopoiesis in zebrafish, discuss various genetic methods available in the zebrafish model for studying hematopoiesis, and describe some of the zebrafish blood mutants identified to date, many of which have known human disease counterparts.
Globin gene switching is a complex, highly regulated process allowing expression of distinct globin genes at specific developmental stages. Here, for the first time, we have characterized all of the zebrafish globins based on the completed genomic sequence. Two distinct chromosomal loci, termed major (chromosome 3) and minor (chromosome 12), harbor the globin genes containing α/β pairs in a 5′-3′ to 3′-5′ orientation. Both these loci share synteny with the mammalian α-globin locus. Zebrafish globin expression was assayed during development and demonstrated two globin switches, similar to human development. A conserved regulatory element, the locus control region (LCR), was revealed by analyzing DNase I hypersensitive sites, H3K4 trimethylation marks and GATA1 binding sites. Surprisingly, the position of these sites with relation to the globin genes is evolutionarily conserved, despite a lack of overall sequence conservation. Motifs within the zebrafish LCR include CACCC, GATA, and NFE2 sites, suggesting functional interactions with known transcription factors but not the same LCR architecture. Functional homology to the mammalian α-LCR MCS-R2 region was confirmed by robust and specific reporter expression in erythrocytes of transgenic zebrafish. Our studies provide a comprehensive characterization of the zebrafish globin loci and clarify the regulation of globin switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.