We used behavioral pharmacology to characterize heterozygous knockin mice with mutations (Q266I or M287L) in the ␣1 subunit of the glycine receptor (GlyR) (J Pharmacol Exp Ther 340: 304 -316, 2012). These mutations were designed to reduce (M287L) or eliminate (Q266I) ethanol potentiation of GlyR function. We asked which behavioral effects of ethanol would be reduced more in the Q266I mutant than the M287L and found rotarod ataxia to be the behavior that fulfilled this criterion. Compared with controls, the mutant mice also differed in ethanol consumption, ethanol-stimulated startle response, signs of acute physical dependence, and duration of loss of righting response produced by ethanol, butanol, ketamine, pentobarbital, and flurazepam. Some of these behavioral changes were mimicked in wild-type mice by acute injections of low, subconvulsive doses of strychnine. Both mutants showed increased acoustic startle response and increased sensitivity to strychnine seizures. Thus, in addition to reducing ethanol action on the GlyRs, these mutations reduced glycinergic inhibition, which may also alter sensitivity to GABAergic drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.