The glacial process of cirque initiation, whereby small initial hillslope hollows grow by nivation until snow can form glacier ice, and ice motion then enlarges the hollow to a fully developed cirque, appears to have difficulty explaining the creation of large cirques in the time available during Quaternary glaciations, at the rates at which glaciers are reported to erode rock, and in rapidly uplifting mountain ranges. It also has difficulty explaining the striking proliferation of cirques in Fiordland, South Island, New Zealand, an area of harder rock and less glaciation than the nearby cirque-poor area of South Westland. Here we show that cirques can be initiated as large, deep-seated, often coseismic rock slope failure source area depressions in which snow may accumulate to form cirque glaciers, which can then remove detritus from, smooth, and enlarge the cirque. We present an example of a classically shaped cirque that has never held a glacier. We show that many similarities between the locations, sizes and shapes of rock slope failure source area depressions and cirques are understandable on this basis, as is the occurrence of cirques in presently aseismic intraplate locations and their relative paucity in actively uplifting ranges. The extent to which cirques may be of mass movement origin has implications for their value as palaeoclimatic indicators.
The Franz Josef Glacier, Westland, New Zealand, has a history of catastrophic sediment-laden outburst floods associated with extreme rainfall events when the glacier toe is advanced over its own sediments. Consideration of these events and inspection of recent sediment deposits suggest that there are three distinct modes of outburst. The first is associated with fans fed by overflow along the glacier margin. As the glacier has advanced across its own forefield gravels, it is inferred that the primary drainage conduit has developed a reach of negative slope. In high flows massive boulders can block the conduit, trapping lesser clasts. The resulting backup of water causes overflows through marginal moulins, producing the fan type of deposit.The second type of outburst deposits massive imbricated boulders at a greater or lesser distance from the glacier portal. In this case, pressure buildup drives the blockage out of the portal where the boulders deposit. Smaller materials are generally carried away.The third type consists of very shallow flows, and produces massive gravel deposits of uncertain provenance. In this condition, the excess pressure in the conduit results in slight uplift of the glacier and widespread discharge of water and sediment below the glacier snout; gravels and smaller sediments are laid down in a massive deposit across the forefield.The massive, boulder-veneered deposit from the December 1995 outburst is interpreted in the light of the above mechanisms as a hyperconcentrated flow deposit from hydraulic jacking, overlain by boulders emplaced by a subsequent conduit outburst. A possible association of outbursts with the present advanced position of the glacier is suggested.
We describe two large convergent multi-fluted glacigenic deposits in the NW Highlands, Scotland, and point out their resemblance to a number of landforms emerging from presently deglaciating areas of Greenland and Antarctica. We suggest that they all result from locally-sourced sediment being deposited by local ice-flow, which was laterally confined by the margins of much larger adjacent glaciers or ice-streams. The NW Highlands features thus seem likely to be the result of processes active during the latter part of the Devensian Glaciation. One of these deposits, on the peninsula between Loch Broom and Little Loch Broom, is evidently sourced from the west-facing Coire Dearg of Beinn Ghobhlach, but was emplaced in a WNW direction rather than along the WSW fall-line. This suggests that the ice that emplaced it was confined by the margins of large glaciers then occupying the adjacent valleys of Loch Broom and Little Loch Broom. The second much larger and more prominent deposit, in Applecross, is composed of bouldery Torridonian sandstone till emplaced onto glacially-scoured bedrock; the only feasible source location for this material is about 12 km distant, which requires that the deposit was carried by ice across the trough of Strath Maol Chalum and emplaced while active ice-streams confined it laterally to its present-day location. This in turn requires that ice lay in the Inner Sound between Applecross and Skye to an elevation 400-500 m above present-day sea level. The Wester Ross Re-advance of 14-15 ka left a fragment of lateral
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.